{"title":"Non-uniqueness for the compressible Euler–Maxwell equations","authors":"Shunkai Mao, Peng Qu","doi":"10.1007/s00526-024-02798-2","DOIUrl":null,"url":null,"abstract":"<p>We consider the Cauchy problem for the isentropic compressible Euler–Maxwell equations under general pressure laws in a three-dimensional periodic domain. For any smooth initial electron density away from the vacuum and smooth equilibrium-charged ion density, we could construct infinitely many <span>\\(\\alpha \\)</span>-Hölder continuous entropy solutions emanating from the same initial data for <span>\\(\\alpha <\\frac{1}{7}\\)</span>. Especially, the electromagnetic field belongs to the Hölder class <span>\\(C^{1,\\alpha }\\)</span>. Furthermore, we provide a continuous entropy solution satisfying the entropy inequality strictly. The proof relies on the convex integration scheme. Due to the constrain of the Maxwell equations, we propose a method of Mikado potential and construct new building blocks.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02798-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the Cauchy problem for the isentropic compressible Euler–Maxwell equations under general pressure laws in a three-dimensional periodic domain. For any smooth initial electron density away from the vacuum and smooth equilibrium-charged ion density, we could construct infinitely many \(\alpha \)-Hölder continuous entropy solutions emanating from the same initial data for \(\alpha <\frac{1}{7}\). Especially, the electromagnetic field belongs to the Hölder class \(C^{1,\alpha }\). Furthermore, we provide a continuous entropy solution satisfying the entropy inequality strictly. The proof relies on the convex integration scheme. Due to the constrain of the Maxwell equations, we propose a method of Mikado potential and construct new building blocks.