Glass-Based Micro-Hotplate With Low Power Consumption and TGV Structure Through Anodic Bonding and Glass Thermal Reflow

IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Honglin Qian;Linxin Chen;Haotian Dai;Fanhong Chen;Shuai Liu;Xiaohui Du;Shuo Gao;Yonggang Jiang;Bing Li;Minjie Zhu;Gaopeng Xue
{"title":"Glass-Based Micro-Hotplate With Low Power Consumption and TGV Structure Through Anodic Bonding and Glass Thermal Reflow","authors":"Honglin Qian;Linxin Chen;Haotian Dai;Fanhong Chen;Shuai Liu;Xiaohui Du;Shuo Gao;Yonggang Jiang;Bing Li;Minjie Zhu;Gaopeng Xue","doi":"10.1109/JMEMS.2024.3425846","DOIUrl":null,"url":null,"abstract":"This study presents a novel microfabrication approach using anodic bonding and glass thermal reflow to fabricate glass-based micro-hotplates with low power consumption owing to the low thermal conductivity coefficient. The glass-film-suspended micro-hotplate, integrated with through glass via (TGV) structure, is achieved by anodic bonding a glass substrate with a patterned silicon (Si) wafer, followed by thermal reflow of the glass substrate around the patterned Si wafer. TGV structures, wherein conductive Si columns are inserted into the glass substrate, have the potential to replace wire-bonders for electrical interconnection with integrated circuit (IC) boards. The fabricated glass-film-suspended micro-hotplates with \n<inline-formula> <tex-math>$\\sim 20\\mu $ </tex-math></inline-formula>\n m thickness demonstrate significantly lower power consumption and higher heating efficiency, compared to equivalent dimensions in Si-based counterparts. It is noted that the thermal conductivity coefficient of Pyrex glass should be corrected after thermal reflow, due to water evaporation and glass substrate recrystallization. Furthermore, our microfabrication approach for precisely patterning glass-based microstructures can be applicable to other glass-based MEMS devices for three-dimensional (3D) integrated microsystems.[2024-0100]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10602766/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel microfabrication approach using anodic bonding and glass thermal reflow to fabricate glass-based micro-hotplates with low power consumption owing to the low thermal conductivity coefficient. The glass-film-suspended micro-hotplate, integrated with through glass via (TGV) structure, is achieved by anodic bonding a glass substrate with a patterned silicon (Si) wafer, followed by thermal reflow of the glass substrate around the patterned Si wafer. TGV structures, wherein conductive Si columns are inserted into the glass substrate, have the potential to replace wire-bonders for electrical interconnection with integrated circuit (IC) boards. The fabricated glass-film-suspended micro-hotplates with $\sim 20\mu $ m thickness demonstrate significantly lower power consumption and higher heating efficiency, compared to equivalent dimensions in Si-based counterparts. It is noted that the thermal conductivity coefficient of Pyrex glass should be corrected after thermal reflow, due to water evaporation and glass substrate recrystallization. Furthermore, our microfabrication approach for precisely patterning glass-based microstructures can be applicable to other glass-based MEMS devices for three-dimensional (3D) integrated microsystems.[2024-0100]
通过阳极键合和玻璃热回流实现低功耗和 TGV 结构的玻璃基微型加热板
本研究提出了一种新颖的微制造方法,利用阳极键合和玻璃热回流来制造玻璃基微热板,由于热传导系数低,因此功耗低。通过阳极键合玻璃基板和有图案的硅(Si)晶片,然后在有图案的硅晶片周围对玻璃基板进行热回流,就能制造出集成有玻璃通孔(TGV)结构的玻璃薄膜悬浮微加热板。导电硅柱插入玻璃基板的 TGV 结构有可能取代集成电路 (IC) 板电气互连的导线粘合剂。与同等尺寸的硅基微热板相比,厚度为20微米的玻璃薄膜悬浮微热板的功耗更低,加热效率更高。值得注意的是,由于水分蒸发和玻璃基板再结晶的原因,百耐克斯玻璃的导热系数应在热回流后进行修正。此外,我们用于精确图案化玻璃基微结构的微制造方法可适用于三维集成微系统的其他玻璃基 MEMS 器件[2024-0100]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Microelectromechanical Systems
Journal of Microelectromechanical Systems 工程技术-工程:电子与电气
CiteScore
6.20
自引率
7.40%
发文量
115
审稿时长
7.5 months
期刊介绍: The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信