Optimal coordinates for Ricci-flat conifolds

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Klaus Kröncke, Áron Szabó
{"title":"Optimal coordinates for Ricci-flat conifolds","authors":"Klaus Kröncke, Áron Szabó","doi":"10.1007/s00526-024-02780-y","DOIUrl":null,"url":null,"abstract":"<p>We compute the indicial roots of the Lichnerowicz Laplacian on Ricci-flat cones and give a detailed description of the corresponding radially homogeneous tensor fields in its kernel. For a Ricci-flat conifold (<i>M</i>, <i>g</i>) which may have asymptotically conical as well as conically singular ends, we compute at each end a lower bound for the order with which the metric converges to the tangent cone. As a special subcase of our result, we show that any Ricci-flat ALE manifold <span>\\((M^n,g)\\)</span> is of order <i>n</i> and thereby close a small gap in a paper by Cheeger and Tian.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02780-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We compute the indicial roots of the Lichnerowicz Laplacian on Ricci-flat cones and give a detailed description of the corresponding radially homogeneous tensor fields in its kernel. For a Ricci-flat conifold (Mg) which may have asymptotically conical as well as conically singular ends, we compute at each end a lower bound for the order with which the metric converges to the tangent cone. As a special subcase of our result, we show that any Ricci-flat ALE manifold \((M^n,g)\) is of order n and thereby close a small gap in a paper by Cheeger and Tian.

Abstract Image

Ricci-flat conifolds 的最佳坐标
我们计算了 Ricci 平面圆锥上 Lichnerowicz 拉普拉奇的指示根,并详细描述了其内核中相应的径向同质张量场。对于可能有渐近圆锥端和圆锥奇异端的理ci-平面圆锥体(M,g),我们计算了每一端度量收敛到切圆锥的阶次下限。作为我们结果的一个特殊子例,我们证明了任何里奇平坦 ALE 流形 ((M^n,g)\)都是 n 阶的,从而弥补了 Cheeger 和 Tian 论文中的一个小漏洞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信