Relationship Between Process Parameters and Defects in Laser Powder Bed Fusion Additive Manufacturing of Crack-Sensitive Al–Cu–Mg Alloy

Tengteng Sun, Ziqian Wang, Qianglong Wei, Yi Wu, Mingliang Wang, Lingyu Kong, Hongjian Jiang, Shimiao Wang, Zijue Tang, Hua Sun, Hongze Wang, Haowei Wang
{"title":"Relationship Between Process Parameters and Defects in Laser Powder Bed Fusion Additive Manufacturing of Crack-Sensitive Al–Cu–Mg Alloy","authors":"Tengteng Sun, Ziqian Wang, Qianglong Wei, Yi Wu, Mingliang Wang, Lingyu Kong, Hongjian Jiang, Shimiao Wang, Zijue Tang, Hua Sun, Hongze Wang, Haowei Wang","doi":"10.1007/s11661-024-07498-2","DOIUrl":null,"url":null,"abstract":"<p>Laser powder bed fusion (L-PBF) is an innovative technique used to manufacture complex and customized parts. However, fabricating crack-sensitive Al–Cu–Mg alloy L-PBF parts with controlled defect levels remains challenging, as the effects of processing parameters on defect evolution are not well understood. In this study, we systematically investigated the influence of laser power, laser scanning speed, and hatching space on defect formation and evolution in L-PBF printed Al–4.1Cu–1.5Mg–0.6Mn alloy. Our findings indicate that laser power and scanning speed greatly impact the occurrence of lack-of-fusion porosity, hot cracks, and gas-induced pores. Initially, the relative density of L-PBF printed samples increases (from 97 to 99 pct) with increasing volumetric energy density (from 200 to 830 J/mm<sup>3</sup>), but then decreases with further increases in volumetric energy density (&gt;830 J/mm<sup>3</sup>). The introduction of alloying elements Cu and Mg leads to increased laser reflectivity and heat dissipation, which in turn affects hot cracking susceptibility (HCS) and reduces the printability of Al–Cu–Mg alloy. This research provides a process map to guide the L-PBF manufacturing of crack-sensitive Al–Cu–Mg alloys.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":"337 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07498-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Laser powder bed fusion (L-PBF) is an innovative technique used to manufacture complex and customized parts. However, fabricating crack-sensitive Al–Cu–Mg alloy L-PBF parts with controlled defect levels remains challenging, as the effects of processing parameters on defect evolution are not well understood. In this study, we systematically investigated the influence of laser power, laser scanning speed, and hatching space on defect formation and evolution in L-PBF printed Al–4.1Cu–1.5Mg–0.6Mn alloy. Our findings indicate that laser power and scanning speed greatly impact the occurrence of lack-of-fusion porosity, hot cracks, and gas-induced pores. Initially, the relative density of L-PBF printed samples increases (from 97 to 99 pct) with increasing volumetric energy density (from 200 to 830 J/mm3), but then decreases with further increases in volumetric energy density (>830 J/mm3). The introduction of alloying elements Cu and Mg leads to increased laser reflectivity and heat dissipation, which in turn affects hot cracking susceptibility (HCS) and reduces the printability of Al–Cu–Mg alloy. This research provides a process map to guide the L-PBF manufacturing of crack-sensitive Al–Cu–Mg alloys.

Abstract Image

裂纹敏感铝铜镁合金激光粉末床熔融快速成型制造中工艺参数与缺陷之间的关系
激光粉末床熔融(L-PBF)是一种用于制造复杂和定制零件的创新技术。然而,由于加工参数对缺陷演化的影响尚未得到充分了解,因此制造具有可控缺陷水平的裂纹敏感铝-铜-镁合金 L-PBF 零件仍具有挑战性。在本研究中,我们系统地研究了激光功率、激光扫描速度和蚀刻空间对 L-PBF 印刷 Al-4.1Cu-1.5Mg-0.6Mn 合金中缺陷形成和演变的影响。我们的研究结果表明,激光功率和扫描速度在很大程度上影响着熔融不足气孔、热裂纹和气体诱导气孔的出现。最初,L-PBF 印刷样品的相对密度随着体积能量密度(从 200 J/mm3 到 830 J/mm3)的增加而增加(从 97% 到 99%),但随着体积能量密度(830 J/mm3)的进一步增加而降低。合金元素铜和镁的引入导致激光反射率和散热量增加,进而影响热裂纹敏感性(HCS)并降低铝-铜-镁合金的可印刷性。这项研究提供了指导裂纹敏感铝-铜-镁合金 L-PBF 生产的工艺图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信