Enhanced emulsification process between viscous liquids in an ultrasonic capillary microreactor: mechanism analysis and application in nano-emulsion preparation
{"title":"Enhanced emulsification process between viscous liquids in an ultrasonic capillary microreactor: mechanism analysis and application in nano-emulsion preparation","authors":"Sawita Tanwinit, Shuainan Zhao, Chaoqun Yao, Guangwen Chen","doi":"10.1007/s41981-024-00331-2","DOIUrl":null,"url":null,"abstract":"<div><p>Experimental investigations into acoustic cavitation and ultrasound-assited emulsification process between highly viscous liquids were systematically conducted in a laboratory-built ultrasonic microreactor. Under ultrasound irradiation, four cavitation modes were observed simultaneously in soybean oil, including volume, shape, transient collapse and cavitation clouds. Influenced by the intense oscillation of cavitation bubbles, emulsification between viscous liquids was initiated through a dispersion and migration mode. The effects of varying parameters, such as input power, residence time, channel size, HLB value, surfactant concentration and volume ratio between aqueous and oil phase, on the size and polydispersity of prepared emulsion were investigated using water-soybean oil two-phase system as a model. The emulsion size was reduced to 75.60 nm through optimization of experimental parameters. Based on these findings, the ultrasonic microreactor was successfully employed in the preparation of Vitamin E-enriched nano-emulsions. A fine emulsion with low average size (47.69 nm) and good storage stability (60 days) was prepared within 2 min, further indicating the potential application of ultrasonic microreactor in the beverage and pharmaceutical industries.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 3","pages":"569 - 584"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-024-00331-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Experimental investigations into acoustic cavitation and ultrasound-assited emulsification process between highly viscous liquids were systematically conducted in a laboratory-built ultrasonic microreactor. Under ultrasound irradiation, four cavitation modes were observed simultaneously in soybean oil, including volume, shape, transient collapse and cavitation clouds. Influenced by the intense oscillation of cavitation bubbles, emulsification between viscous liquids was initiated through a dispersion and migration mode. The effects of varying parameters, such as input power, residence time, channel size, HLB value, surfactant concentration and volume ratio between aqueous and oil phase, on the size and polydispersity of prepared emulsion were investigated using water-soybean oil two-phase system as a model. The emulsion size was reduced to 75.60 nm through optimization of experimental parameters. Based on these findings, the ultrasonic microreactor was successfully employed in the preparation of Vitamin E-enriched nano-emulsions. A fine emulsion with low average size (47.69 nm) and good storage stability (60 days) was prepared within 2 min, further indicating the potential application of ultrasonic microreactor in the beverage and pharmaceutical industries.
期刊介绍:
The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.