Synergistic lubrication effect of OLC and MoDTC for reducing friction and wear of MAO ceramic coating on TC4 alloy

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Yang Li, Xiao Bai, Dejian Zhang, Huilai Sun, Zhengang Guo, Shuyan Yang, Yong Wan
{"title":"Synergistic lubrication effect of OLC and MoDTC for reducing friction and wear of MAO ceramic coating on TC4 alloy","authors":"Yang Li,&nbsp;Xiao Bai,&nbsp;Dejian Zhang,&nbsp;Huilai Sun,&nbsp;Zhengang Guo,&nbsp;Shuyan Yang,&nbsp;Yong Wan","doi":"10.1111/ijac.14859","DOIUrl":null,"url":null,"abstract":"<p>TC4 titanium alloy has been widely used in the automotive field due to its exceptional properties. However, inherent defects such as low hardness and poor wear resistance for TC4 alloy limited its wider application. The microarc oxidation (MAO) technique was employed in this paper to prepare MAO coatings on TC4 titanium alloy. The microstructure, phase structure, mechanical properties, and tribological performance were systematically evaluated. The results show that the coating contains a large amount of rutile TiO<sub>2</sub> hard phase after MAO treatment, which significantly improves the mechanical properties of the substrate. The hardness of the MAO coating can reach 581 HV<sub>.05</sub>. Furthermore, the synergistic lubrication effect of onion-like carbon (OLC) nanoparticles and organic molybdenum dithiocarbamate (MoDTC) in PAO oil was observed for MAO-treated TC4. Particularly, when .01 wt.% OLC is used with 1 wt.% MoDTC oil, the coefficient of friction (COF) decreases to .062, and the wear rate decreases to 4.3 × 10<sup>−7</sup> mm<sup>3</sup>/Nm. Combined Raman and X-ray photoelectron spectroscopy (XPS) analysis indicate that OLC is deposited on coating area to form a lubricating carbon film. Additionally, OLC can promote the decomposition of MoDTC during sliding to generate a tribofilm containing MoS<sub>2</sub>.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"4293-4303"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14859","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

TC4 titanium alloy has been widely used in the automotive field due to its exceptional properties. However, inherent defects such as low hardness and poor wear resistance for TC4 alloy limited its wider application. The microarc oxidation (MAO) technique was employed in this paper to prepare MAO coatings on TC4 titanium alloy. The microstructure, phase structure, mechanical properties, and tribological performance were systematically evaluated. The results show that the coating contains a large amount of rutile TiO2 hard phase after MAO treatment, which significantly improves the mechanical properties of the substrate. The hardness of the MAO coating can reach 581 HV.05. Furthermore, the synergistic lubrication effect of onion-like carbon (OLC) nanoparticles and organic molybdenum dithiocarbamate (MoDTC) in PAO oil was observed for MAO-treated TC4. Particularly, when .01 wt.% OLC is used with 1 wt.% MoDTC oil, the coefficient of friction (COF) decreases to .062, and the wear rate decreases to 4.3 × 10−7 mm3/Nm. Combined Raman and X-ray photoelectron spectroscopy (XPS) analysis indicate that OLC is deposited on coating area to form a lubricating carbon film. Additionally, OLC can promote the decomposition of MoDTC during sliding to generate a tribofilm containing MoS2.

OLC 和 MoDTC 在减少 TC4 合金 MAO 陶瓷涂层的摩擦和磨损方面的协同润滑效果
TC4 钛合金因其优异的性能而被广泛应用于汽车领域。然而,TC4 合金硬度低、耐磨性差等固有缺陷限制了它的广泛应用。本文采用微弧氧化(MAO)技术制备了 TC4 钛合金的 MAO 涂层。系统地评估了涂层的微观结构、相结构、机械性能和摩擦学性能。结果表明,经 MAO 处理后的涂层含有大量金红石型 TiO2 硬相,可显著提高基体的机械性能。MAO 涂层的硬度可达 581 HV.05。此外,在 MAO 处理过的 TC4 中还观察到了 PAO 油中洋葱状碳(OLC)纳米粒子和有机二硫代氨基甲酸钼(MoDTC)的协同润滑效果。特别是当 0.01 wt.% OLC 与 1 wt.% MoDTC 油一起使用时,摩擦系数 (COF) 降至 0.062,磨损率降至 4.3 × 10-7 mm3/Nm。拉曼光谱和 X 射线光电子能谱(XPS)分析表明,OLC 沉积在涂层区域,形成一层润滑碳膜。此外,OLC 还能促进 MoDTC 在滑动过程中分解,生成含有 MoS2 的三膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Applied Ceramic Technology
International Journal of Applied Ceramic Technology 工程技术-材料科学:硅酸盐
CiteScore
3.90
自引率
9.50%
发文量
280
审稿时长
4.5 months
期刊介绍: The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas: Nanotechnology applications; Ceramic Armor; Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors); Ceramic Matrix Composites; Functional Materials; Thermal and Environmental Barrier Coatings; Bioceramic Applications; Green Manufacturing; Ceramic Processing; Glass Technology; Fiber optics; Ceramics in Environmental Applications; Ceramics in Electronic, Photonic and Magnetic Applications;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信