Poly(Butylene Succinate) Copolyesters Modified with Linear-Chain Diols toward Adjustable Thermal, Mechanical, and Biodegradable Properties

IF 2.5 4区 化学 Q3 POLYMER SCIENCE
Qiang Wang, Jiahao Yu, Chunhui Yu, Chunlei Zhang, Chao Wei, Yan Xiao
{"title":"Poly(Butylene Succinate) Copolyesters Modified with Linear-Chain Diols toward Adjustable Thermal, Mechanical, and Biodegradable Properties","authors":"Qiang Wang,&nbsp;Jiahao Yu,&nbsp;Chunhui Yu,&nbsp;Chunlei Zhang,&nbsp;Chao Wei,&nbsp;Yan Xiao","doi":"10.1002/macp.202400170","DOIUrl":null,"url":null,"abstract":"<p>The production and application of poly(butylene succinate) (PBS) still face challenges such as high production costs, insufficient toughness, and slow biodegradation. This study utilizes the ring-opening condensation polymerization method to prepare PBS copolyesters using succinic anhydride (SAA) and 1,4-butanediol (BDO) as raw materials, with 20 moL% different lengths of linear-chain diols as third monomers (carbon numbers are 3, 5, 6, 8, 9,10, and 12). Both PBS and its copolyesters exhibit high weight average molecular weights (18.8 × 10<sup>4</sup>–26.1 × 10<sup>4</sup> g moL<sup>−1</sup>), much higher than those obtained through the traditional conventional direct esterification method. Incorporating the third monomer reduces the glass transition temperature (<i>T</i><sub>g</sub>), crystallinity, and melting point (<i>T</i><sub>m</sub>) of the copolyesters. As the chain length of the third monomer increases, the copolyesters show improved toughness, with the elongation at break and notch impact strength of poly(butylene succinate<i>-ran-</i>dodecylene succinate) (P(BS<i>-ran-</i>DoS)) increasing from 374.1% and 5.6 KJ m<sup>−2</sup> of PBS to 723.2% and 64.8 KJ m<sup>−2</sup>, respectively. The degradation rate of the copolyesters modified with short-chain diols increases significantly, and as the chain length of the third monomer increases, the degradation rate of the copolyesters slows down. Therefore, the selection of the third monomer can be used to adjust the properties of the polymer.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"225 19","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400170","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The production and application of poly(butylene succinate) (PBS) still face challenges such as high production costs, insufficient toughness, and slow biodegradation. This study utilizes the ring-opening condensation polymerization method to prepare PBS copolyesters using succinic anhydride (SAA) and 1,4-butanediol (BDO) as raw materials, with 20 moL% different lengths of linear-chain diols as third monomers (carbon numbers are 3, 5, 6, 8, 9,10, and 12). Both PBS and its copolyesters exhibit high weight average molecular weights (18.8 × 104–26.1 × 104 g moL−1), much higher than those obtained through the traditional conventional direct esterification method. Incorporating the third monomer reduces the glass transition temperature (Tg), crystallinity, and melting point (Tm) of the copolyesters. As the chain length of the third monomer increases, the copolyesters show improved toughness, with the elongation at break and notch impact strength of poly(butylene succinate-ran-dodecylene succinate) (P(BS-ran-DoS)) increasing from 374.1% and 5.6 KJ m−2 of PBS to 723.2% and 64.8 KJ m−2, respectively. The degradation rate of the copolyesters modified with short-chain diols increases significantly, and as the chain length of the third monomer increases, the degradation rate of the copolyesters slows down. Therefore, the selection of the third monomer can be used to adjust the properties of the polymer.

Abstract Image

用直链二元醇改性的聚(丁二酸丁二醇酯)共聚物具有可调节的热学、机械和生物降解特性
聚丁二酸丁二醇酯(PBS)的生产和应用仍然面临着生产成本高、韧性不足、生物降解慢等挑战。本研究采用开环缩合聚合法,以丁二酸酐(SAA)和 1,4-丁二醇(BDO)为原料,以 20 moL% 不同长度的直链二元醇为第三单体(碳数为 3、5、6、8、9、10 和 12),制备 PBS 共聚物。PBS 及其共聚物都具有很高的平均分子量(18.8 × 104-26.1 × 104 g moL-1),远高于传统的直接酯化法。加入第三种单体可降低共聚聚酯的玻璃化转变温度(Tg)、结晶度和熔点(Tm)。随着第三种单体链长的增加,共聚物的韧性也得到改善,聚(丁二酸丁二醇酯-ran-十二烷基丁二酸酯)(P(BS-ran-DoS))的断裂伸长率和缺口冲击强度分别从 PBS 的 374.1% 和 5.6 KJ m-2 增加到 723.2% 和 64.8 KJ m-2。用短链二元醇改性的共聚多酯的降解率显著增加,随着第三单体链长的增加,共聚多酯的降解率减慢。因此,可以通过选择第三种单体来调整聚合物的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Chemistry and Physics
Macromolecular Chemistry and Physics 化学-高分子科学
CiteScore
4.30
自引率
4.00%
发文量
278
审稿时长
1.4 months
期刊介绍: Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信