Huijing Cui
(, ), Fan Wang
(, ), Chao Ma
(, ), Hongjie Zhang
(, ), Kai Liu
(, )
{"title":"Microbial-driven fabrication of rare earth materials","authors":"Huijing Cui \n (, ), Fan Wang \n (, ), Chao Ma \n (, ), Hongjie Zhang \n (, ), Kai Liu \n (, )","doi":"10.1007/s40843-024-2859-4","DOIUrl":null,"url":null,"abstract":"<div><p>Rare earth elements (REEs) are essential raw materials vital for the advancement of modern high-tech industries. However, their extraction often leads to environmental concerns. The similar chemical properties of REEs contribute to high energy consumption and significant pollution emissions during the separation process. To address these challenges and promote sustainable development and efficient resource utilization, synthetic biology techniques have been leveraged to engineer microorganisms for rare earth fabrication. Establishing an engineered microorganism manufacture platform allows for the <i>in-situ</i> synthesis of high-value rare earth biomaterials. This innovation not only supports clinical translational research but also enhances applications in cutting-edge fields. This article offers a comprehensive review of the rational construction of rare earth cell factories, the synthesis of high-value rare earth biomaterials, and their diverse applications in high-tech industries. Moreover, it examines the perspectives and challenges within the domain of lanthanide materials fabrication using microbial systems.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 8","pages":"2376 - 2392"},"PeriodicalIF":6.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-2859-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rare earth elements (REEs) are essential raw materials vital for the advancement of modern high-tech industries. However, their extraction often leads to environmental concerns. The similar chemical properties of REEs contribute to high energy consumption and significant pollution emissions during the separation process. To address these challenges and promote sustainable development and efficient resource utilization, synthetic biology techniques have been leveraged to engineer microorganisms for rare earth fabrication. Establishing an engineered microorganism manufacture platform allows for the in-situ synthesis of high-value rare earth biomaterials. This innovation not only supports clinical translational research but also enhances applications in cutting-edge fields. This article offers a comprehensive review of the rational construction of rare earth cell factories, the synthesis of high-value rare earth biomaterials, and their diverse applications in high-tech industries. Moreover, it examines the perspectives and challenges within the domain of lanthanide materials fabrication using microbial systems.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.