Recent advances and innovations in the design and fabrication of wearable flexible biosensors and human health monitoring systems based on conjugated polymers
{"title":"Recent advances and innovations in the design and fabrication of wearable flexible biosensors and human health monitoring systems based on conjugated polymers","authors":"Vinh Van Tran, Viet-Duc Phung, Daeho Lee","doi":"10.1007/s42242-024-00297-z","DOIUrl":null,"url":null,"abstract":"<p>Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability. The growing research and utilization of novel materials in designing wearable biosensors have accelerated the development of point-of-care sensing platforms and implantable biomedical devices in human health care. Among numerous potential materials, conjugated polymers (CPs) are emerging as ideal choices for constructing high-performance wearable biosensors because of their outstanding conductive and mechanical properties. Recently, CPs have been extensively incorporated into various wearable biosensors to monitor a range of target biomolecules. However, fabricating highly reliable CP-based wearable biosensors for practical applications remains a significant challenge, necessitating novel developmental strategies for enhancing the viability of such biosensors. Accordingly, this review aims to provide consolidated scientific evidence by summarizing and evaluating recent studies focused on designing and fabricating CP-based wearable biosensors, thereby facilitating future research. Emphasizing the superior properties and benefits of CPs, this review aims to clarify their potential applicability within this field. Furthermore, the fundamentals and main components of CP-based wearable biosensors and their sensing mechanisms are discussed in detail. The recent advancements in CP nanostructures and hybridizations for improved sensing performance, along with recent innovations in next-generation wearable biosensors are highlighted. CP-based wearable biosensors have been—and will continue to be—an ideal platform for developing effective and user-friendly diagnostic technologies for human health monitoring.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\n","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Design and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42242-024-00297-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable biosensors have received great interest as patient-friendly diagnostic technologies because of their high flexibility and conformability. The growing research and utilization of novel materials in designing wearable biosensors have accelerated the development of point-of-care sensing platforms and implantable biomedical devices in human health care. Among numerous potential materials, conjugated polymers (CPs) are emerging as ideal choices for constructing high-performance wearable biosensors because of their outstanding conductive and mechanical properties. Recently, CPs have been extensively incorporated into various wearable biosensors to monitor a range of target biomolecules. However, fabricating highly reliable CP-based wearable biosensors for practical applications remains a significant challenge, necessitating novel developmental strategies for enhancing the viability of such biosensors. Accordingly, this review aims to provide consolidated scientific evidence by summarizing and evaluating recent studies focused on designing and fabricating CP-based wearable biosensors, thereby facilitating future research. Emphasizing the superior properties and benefits of CPs, this review aims to clarify their potential applicability within this field. Furthermore, the fundamentals and main components of CP-based wearable biosensors and their sensing mechanisms are discussed in detail. The recent advancements in CP nanostructures and hybridizations for improved sensing performance, along with recent innovations in next-generation wearable biosensors are highlighted. CP-based wearable biosensors have been—and will continue to be—an ideal platform for developing effective and user-friendly diagnostic technologies for human health monitoring.
期刊介绍:
Bio-Design and Manufacturing reports new research, new technology and new applications in the field of biomanufacturing, especially 3D bioprinting. Topics of Bio-Design and Manufacturing cover tissue engineering, regenerative medicine, mechanical devices from the perspectives of materials, biology, medicine and mechanical engineering, with a focus on manufacturing science and technology to fulfil the requirement of bio-design.