Huifang Zhang, Jun Xie, Qi Li, Hao Wu, Jinjiang Yu, Hongyu Chai, Fengjiang Zhang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun
{"title":"Influence of Substituting W for Nb or Hf on Solidification Behavior of a Typical Co–Ni–Al–W Based Superalloy","authors":"Huifang Zhang, Jun Xie, Qi Li, Hao Wu, Jinjiang Yu, Hongyu Chai, Fengjiang Zhang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun","doi":"10.1007/s40195-024-01749-2","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the effects of various elements on solidification behavior is crucial for designing the composition of <i>γ</i>’-strengthened Co-based superalloys and is fundamental for controlling the as-cast structure and formulating subsequent heat treatment processes. This research investigated the effects of replacing 1 at.% W with 1 at.% Nb or Hf elements on the solidification behavior of Co–Ni–Al–W-based superalloys. The findings revealed that substituting W with Nb and Hf resulted in a notable decrease in both the solidus temperature (<i>T</i><sub>S</sub>) and liquidus temperature (<i>T</i><sub>L</sub>). Specifically, the substitution of W with Nb lowered <i>T</i><sub>S</sub> from 1353 °C to 1332 °C and <i>T</i><sub>L</sub> from 1383 °C to 1368 °C, while replacing W with Hf decreased <i>T</i><sub>S</sub> from 1353 °C to 1330 °C and <i>T</i><sub>L</sub> from 1383 °C to 1366 °C. Moreover, both Nb and Hf element are positive segregation element, while Nb decreases and Hf increases W segregation, respectively. During the final solidification stage, the substitution of W with Nb resulted in the formation of eutectic (<i>γ</i> + <i>γ</i>’), Co<sub>3</sub>Ta, and a small amount of <i>μ</i>-Co<sub>7</sub>Nb<sub>6</sub> phase, while replacing W with Hf resulted in the formation of the Laves phase and <i>β</i>-CoAl phase. The solidification paths of the three alloys were confirmed based on the result of differential scanning calorimetry, isothermal solidification experiment and Thermo-calc simulation. These results offer a theoretical basis for the composition design and optimization of heat treatment processes for Co–Ni–Al–W-based superalloys.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 11","pages":"1907 - 1920"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01749-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the effects of various elements on solidification behavior is crucial for designing the composition of γ’-strengthened Co-based superalloys and is fundamental for controlling the as-cast structure and formulating subsequent heat treatment processes. This research investigated the effects of replacing 1 at.% W with 1 at.% Nb or Hf elements on the solidification behavior of Co–Ni–Al–W-based superalloys. The findings revealed that substituting W with Nb and Hf resulted in a notable decrease in both the solidus temperature (TS) and liquidus temperature (TL). Specifically, the substitution of W with Nb lowered TS from 1353 °C to 1332 °C and TL from 1383 °C to 1368 °C, while replacing W with Hf decreased TS from 1353 °C to 1330 °C and TL from 1383 °C to 1366 °C. Moreover, both Nb and Hf element are positive segregation element, while Nb decreases and Hf increases W segregation, respectively. During the final solidification stage, the substitution of W with Nb resulted in the formation of eutectic (γ + γ’), Co3Ta, and a small amount of μ-Co7Nb6 phase, while replacing W with Hf resulted in the formation of the Laves phase and β-CoAl phase. The solidification paths of the three alloys were confirmed based on the result of differential scanning calorimetry, isothermal solidification experiment and Thermo-calc simulation. These results offer a theoretical basis for the composition design and optimization of heat treatment processes for Co–Ni–Al–W-based superalloys.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.