Influence of Substituting W for Nb or Hf on Solidification Behavior of a Typical Co–Ni–Al–W Based Superalloy

IF 2.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Huifang Zhang, Jun Xie, Qi Li, Hao Wu, Jinjiang Yu, Hongyu Chai, Fengjiang Zhang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun
{"title":"Influence of Substituting W for Nb or Hf on Solidification Behavior of a Typical Co–Ni–Al–W Based Superalloy","authors":"Huifang Zhang, Jun Xie, Qi Li, Hao Wu, Jinjiang Yu, Hongyu Chai, Fengjiang Zhang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun","doi":"10.1007/s40195-024-01749-2","DOIUrl":null,"url":null,"abstract":"<p>Understanding the effects of various elements on solidification behavior is crucial for designing the composition of <i>γ</i>’-strengthened Co-based superalloys and is fundamental for controlling the as-cast structure and formulating subsequent heat treatment processes. This research investigated the effects of replacing 1 at.% W with 1 at.% Nb or Hf elements on the solidification behavior of Co–Ni–Al–W-based superalloys. The findings revealed that substituting W with Nb and Hf resulted in a notable decrease in both the solidus temperature (<i>T</i><sub>S</sub>) and liquidus temperature (<i>T</i><sub>L</sub>). Specifically, the substitution of W with Nb lowered <i>T</i><sub>S</sub> from 1353 °C to 1332 °C and <i>T</i><sub>L</sub> from 1383 °C to 1368 °C, while replacing W with Hf decreased <i>T</i><sub>S</sub> from 1353 °C to 1330 °C and <i>T</i><sub>L</sub> from 1383 °C to 1366 °C. Moreover, both Nb and Hf element are positive segregation element, while Nb decreases and Hf increases W segregation, respectively. During the final solidification stage, the substitution of W with Nb resulted in the formation of eutectic (<i>γ</i> + <i>γ</i>’), Co<sub>3</sub>Ta, and a small amount of <i>μ</i>-Co<sub>7</sub>Nb<sub>6</sub> phase, while replacing W with Hf resulted in the formation of the Laves phase and <i>β</i>-CoAl phase. The solidification paths of the three alloys were confirmed based on the result of differential scanning calorimetry, isothermal solidification experiment and Thermo-calc simulation. These results offer a theoretical basis for the composition design and optimization of heat treatment processes for Co–Ni–Al–W-based superalloys.</p>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1007/s40195-024-01749-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the effects of various elements on solidification behavior is crucial for designing the composition of γ’-strengthened Co-based superalloys and is fundamental for controlling the as-cast structure and formulating subsequent heat treatment processes. This research investigated the effects of replacing 1 at.% W with 1 at.% Nb or Hf elements on the solidification behavior of Co–Ni–Al–W-based superalloys. The findings revealed that substituting W with Nb and Hf resulted in a notable decrease in both the solidus temperature (TS) and liquidus temperature (TL). Specifically, the substitution of W with Nb lowered TS from 1353 °C to 1332 °C and TL from 1383 °C to 1368 °C, while replacing W with Hf decreased TS from 1353 °C to 1330 °C and TL from 1383 °C to 1366 °C. Moreover, both Nb and Hf element are positive segregation element, while Nb decreases and Hf increases W segregation, respectively. During the final solidification stage, the substitution of W with Nb resulted in the formation of eutectic (γ + γ’), Co3Ta, and a small amount of μ-Co7Nb6 phase, while replacing W with Hf resulted in the formation of the Laves phase and β-CoAl phase. The solidification paths of the three alloys were confirmed based on the result of differential scanning calorimetry, isothermal solidification experiment and Thermo-calc simulation. These results offer a theoretical basis for the composition design and optimization of heat treatment processes for Co–Ni–Al–W-based superalloys.

Abstract Image

以 W 替代 Nb 或 Hf 对典型 Co-Ni-Al-W 基超耐热合金凝固行为的影响
了解各种元素对凝固行为的影响对于设计γ'-强化钴基超合金的成分至关重要,也是控制铸件结构和制定后续热处理工艺的基础。本研究调查了用 1%的 Nb 或 Hf 元素替代 1%的 W 对 Co-Ni-Al-W 基超合金凝固行为的影响。研究结果表明,用 Nb 和 Hf 替代 W 会显著降低凝固温度 (TS) 和液相温度 (TL)。具体地说,用铌代替 W 后,TS 从 1353 ℃ 降至 1332 ℃,TL 从 1383 ℃ 降至 1368 ℃,而用 Hf 代替 W 后,TS 从 1353 ℃ 降至 1330 ℃,TL 从 1383 ℃ 降至 1366 ℃。此外,铌和铪元素都是正偏析元素,铌和铪分别降低和增加了W的偏析。在最后凝固阶段,用 Nb 替代 W 会形成共晶(γ + γ')、Co3Ta 和少量 μ-Co7Nb6 相,而用 Hf 替代 W 则会形成 Laves 相和β-CoAl 相。根据差示扫描量热法、等温凝固实验和 Thermo-calc 模拟的结果,确认了三种合金的凝固路径。这些结果为 Co-Ni-Al-W 基超合金的成分设计和热处理工艺优化提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信