{"title":"Explaining poor performance of text-based machine learning models for vulnerability detection","authors":"Kollin Napier, Tanmay Bhowmik, Zhiqian Chen","doi":"10.1007/s10664-024-10519-8","DOIUrl":null,"url":null,"abstract":"<p>With an increase of severity in software vulnerabilities, machine learning models are being adopted to combat this threat. Given the possibilities towards usage of such models, research in this area has introduced various approaches. Although models may differ in performance, there is an overall lack of explainability in understanding how a model learns and predicts. Furthermore, recent research suggests that models perform poorly in detecting vulnerabilities when interpreting source code as text, known as “text-based” models. To help explain this poor performance, we explore the dimensions of explainability. From recent studies on text-based models, we experiment with removal of overlapping features present in training and testing datasets, deemed “cross-cutting”. We conduct scenario experiments removing such “cross-cutting” data and reassessing model performance. Based on the results, we examine how removal of these “cross-cutting” features may affect model performance. Our results show that removal of “cross-cutting” features may provide greater performance of models in general, thus leading to explainable dimensions regarding data dependency and agnostic models. Overall, we conclude that model performance can be improved, and explainable aspects of such models can be identified via empirical analysis of the models’ performance.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"36 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10664-024-10519-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
With an increase of severity in software vulnerabilities, machine learning models are being adopted to combat this threat. Given the possibilities towards usage of such models, research in this area has introduced various approaches. Although models may differ in performance, there is an overall lack of explainability in understanding how a model learns and predicts. Furthermore, recent research suggests that models perform poorly in detecting vulnerabilities when interpreting source code as text, known as “text-based” models. To help explain this poor performance, we explore the dimensions of explainability. From recent studies on text-based models, we experiment with removal of overlapping features present in training and testing datasets, deemed “cross-cutting”. We conduct scenario experiments removing such “cross-cutting” data and reassessing model performance. Based on the results, we examine how removal of these “cross-cutting” features may affect model performance. Our results show that removal of “cross-cutting” features may provide greater performance of models in general, thus leading to explainable dimensions regarding data dependency and agnostic models. Overall, we conclude that model performance can be improved, and explainable aspects of such models can be identified via empirical analysis of the models’ performance.
期刊介绍:
Empirical Software Engineering provides a forum for applied software engineering research with a strong empirical component, and a venue for publishing empirical results relevant to both researchers and practitioners. Empirical studies presented here usually involve the collection and analysis of data and experience that can be used to characterize, evaluate and reveal relationships between software development deliverables, practices, and technologies. Over time, it is expected that such empirical results will form a body of knowledge leading to widely accepted and well-formed theories.
The journal also offers industrial experience reports detailing the application of software technologies - processes, methods, or tools - and their effectiveness in industrial settings.
Empirical Software Engineering promotes the publication of industry-relevant research, to address the significant gap between research and practice.