Investigations on structural, dielectric and multiferroic properties of Bi2FeNiO6 double perovskite synthesized using sol-gel modified combustion technique
{"title":"Investigations on structural, dielectric and multiferroic properties of Bi2FeNiO6 double perovskite synthesized using sol-gel modified combustion technique","authors":"Rahul Kumar Sahu, Oroosa Subohi","doi":"10.1007/s10971-024-06486-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper reports the structural, dielectric, electrical, and multiferroic properties of Bi<sub>2</sub>FeNiO<sub>6</sub> (BFNO) double perovskite synthesised using a sol-gel modified combustion technique. Its calcination temperature, 873 K, was determined using the mass variation in the TGA curve. Structural characterisation was conducted with the X-ray diffraction technique and the perovskite was found to adopt a cubic structure with space group <i>Fm</i><span>\\(\\bar{3}\\)</span><i>m</i> (#225). Synchrotron-based powder angle dispersive X-ray diffraction (ADXRD) measurements were carried out to analyze the structural stability with temperature variation (RT-773 K). SEM studies revealed nearly cubic nanostructures with an average grain size of ~54 nm. EDS and XPS studies confirm the stoichiometric and electrical neutrality of the compound, respectively. The ε vs T curve shows the ferroelectric Curie temperature to be around 732 K, corroborating an exothermic peak observed in the DSC curve around the same temperature. The M-H curve and PE loop show the coexistence of ferroelectric and ferromagnetic properties in the as-prepared Bi<sub>2</sub>FeNiO<sub>6</sub> at room temperature.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"111 3","pages":"766 - 782"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06486-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports the structural, dielectric, electrical, and multiferroic properties of Bi2FeNiO6 (BFNO) double perovskite synthesised using a sol-gel modified combustion technique. Its calcination temperature, 873 K, was determined using the mass variation in the TGA curve. Structural characterisation was conducted with the X-ray diffraction technique and the perovskite was found to adopt a cubic structure with space group Fm\(\bar{3}\)m (#225). Synchrotron-based powder angle dispersive X-ray diffraction (ADXRD) measurements were carried out to analyze the structural stability with temperature variation (RT-773 K). SEM studies revealed nearly cubic nanostructures with an average grain size of ~54 nm. EDS and XPS studies confirm the stoichiometric and electrical neutrality of the compound, respectively. The ε vs T curve shows the ferroelectric Curie temperature to be around 732 K, corroborating an exothermic peak observed in the DSC curve around the same temperature. The M-H curve and PE loop show the coexistence of ferroelectric and ferromagnetic properties in the as-prepared Bi2FeNiO6 at room temperature.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.