{"title":"Formation of Finite Time Singularity for Axially Symmetric Magnetohydrodynamic Waves in 3-D","authors":"Lv Cai, Ning-An Lai","doi":"10.1007/s00021-024-00889-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the compressible magnetohydrodynamics equations in three dimensions, which offer a good model for plasmas. Formation of singularity for <span>\\(C^1\\)</span>-solution in finite time is proved with axisymmetric initial data. The key observation is that the magnetic force term admits a good structure with axisymmetric assumption.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00889-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we study the compressible magnetohydrodynamics equations in three dimensions, which offer a good model for plasmas. Formation of singularity for \(C^1\)-solution in finite time is proved with axisymmetric initial data. The key observation is that the magnetic force term admits a good structure with axisymmetric assumption.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.