{"title":"The Mozambique Channel trough variability and its influence on regional precipitation variability in Mozambique in austral summer","authors":"Luis Adriano Chongue, Kazuaki Nishii","doi":"10.2151/sola.2024-038","DOIUrl":null,"url":null,"abstract":"</p><p>The Mozambique Channel trough (MCT) is one of the weather systems that affect Southern Africa including Mozambique, but has not received much attention. Through the empirical orthogonal function (EOF) analysis applied for austral summer-mean sea level pressure (SLP), interannual variability of the MCT is categorized into that of its intensity and zonal shift. The MCT intensity is significantly correlated to ENSO but is not correlated to regional precipitation in Mozambique. In contrast, the zonal shift of the MCT is not significantly correlated to ENSO but is correlated to regional precipitation there. A westward shift of the MCT is accompanied by the positive subtropical Indian Ocean dipole (SIOD) and strengthened Mascarene High (MH) that enhance moisture convergence over the Southern Indian convergence zone, inducing increased precipitation in southern and central regions of Mozambique. An eastward shift of the MCT is not necessarily accompanied by the SIOD but accompanied by weak suppression of the MH and precipitation there. However, if the eastward shift occurs simultaneously with the negative SIOD, it accompanies El Niño and prominent weakening of the MH, which should lead to stronger precipitation decrease in southern and central regions and increase in the northeast region of Mozambique.</p>\n<p></p>","PeriodicalId":49501,"journal":{"name":"Sola","volume":"25 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sola","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/sola.2024-038","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Mozambique Channel trough (MCT) is one of the weather systems that affect Southern Africa including Mozambique, but has not received much attention. Through the empirical orthogonal function (EOF) analysis applied for austral summer-mean sea level pressure (SLP), interannual variability of the MCT is categorized into that of its intensity and zonal shift. The MCT intensity is significantly correlated to ENSO but is not correlated to regional precipitation in Mozambique. In contrast, the zonal shift of the MCT is not significantly correlated to ENSO but is correlated to regional precipitation there. A westward shift of the MCT is accompanied by the positive subtropical Indian Ocean dipole (SIOD) and strengthened Mascarene High (MH) that enhance moisture convergence over the Southern Indian convergence zone, inducing increased precipitation in southern and central regions of Mozambique. An eastward shift of the MCT is not necessarily accompanied by the SIOD but accompanied by weak suppression of the MH and precipitation there. However, if the eastward shift occurs simultaneously with the negative SIOD, it accompanies El Niño and prominent weakening of the MH, which should lead to stronger precipitation decrease in southern and central regions and increase in the northeast region of Mozambique.
期刊介绍:
SOLA (Scientific Online Letters on the Atmosphere) is a peer-reviewed, Open Access, online-only journal. It publishes scientific discoveries and advances in understanding in meteorology, climatology, the atmospheric sciences and related interdisciplinary areas. SOLA focuses on presenting new and scientifically rigorous observations, experiments, data analyses, numerical modeling, data assimilation, and technical developments as quickly as possible. It achieves this via rapid peer review and publication of research letters, published as Regular Articles.
Published and supported by the Meteorological Society of Japan, the journal follows strong research and publication ethics principles. Most manuscripts receive a first decision within one month and a decision upon resubmission within a further month. Accepted articles are then quickly published on the journal’s website, where they are easily accessible to our broad audience.