Electrochemically activated metal oxide sites at Rh–Ni2P electrocatalyst for efficient alkaline hydrogen evolution reaction

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cheng Peng, Jia-Yi Li, Luo-Xiang Shi, Ming-Yue Wang, Wen-Hai Wang, Tao Cheng, Pei-Zhi Yang, Hao Yang, Kong-Lin Wu
{"title":"Electrochemically activated metal oxide sites at Rh–Ni2P electrocatalyst for efficient alkaline hydrogen evolution reaction","authors":"Cheng Peng,&nbsp;Jia-Yi Li,&nbsp;Luo-Xiang Shi,&nbsp;Ming-Yue Wang,&nbsp;Wen-Hai Wang,&nbsp;Tao Cheng,&nbsp;Pei-Zhi Yang,&nbsp;Hao Yang,&nbsp;Kong-Lin Wu","doi":"10.1007/s12598-024-02903-6","DOIUrl":null,"url":null,"abstract":"<div><p>Highly efficient hydrogen evolution reaction (HER) electrocatalysts play a crucial part in generating green hydrogen. Herein, an electrochemical activation approach was applied to design 6.7 Rh–Ni<sub>2</sub>P-800CV electrocatalysts in alkaline electrolytes. The results confirm that the generation of metal oxide sites through the electrochemical activation strategy can effectively improve the intrinsic activity of 6.7 Rh–Ni<sub>2</sub>P-800CV. The density functional calculations further confirm that metal oxide active sites are favorable for H<sub>2</sub>O adsorption and activation and H* adsorption/desorption. The 6.7 Rh–Ni<sub>2</sub>P-800CV possesses significantly enhanced HER performance with low overpotential (25 mV at 10 mA·cm<sup>−2</sup>), small Tafel (60 mV·dec<sup>−1</sup>) and robust stability in 1.0 M KOH, outperforming Pt/C and 6.7 Rh–Ni<sub>2</sub>P counterparts. Meanwhile, 6.7 Rh–Ni<sub>2</sub>P-800CV can even operate at a large current density (550 mA·cm<sup>−2</sup>) up to 90 h with an overpotential of 320 mV, which meets the requirements of industrial water splitting. What’s more, the overall water-splitting systems (6.7 Rh–Ni<sub>2</sub>P-800CV || 6.7 Rh–Ni<sub>2</sub>P-800CV) can be directly driven by the solar cell. This work highlights that electrochemical activation technology provides a robust avenue toward constructing efficient electrocatalysts for sustainable energy conversion.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"43 12","pages":"6416 - 6425"},"PeriodicalIF":9.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02903-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Highly efficient hydrogen evolution reaction (HER) electrocatalysts play a crucial part in generating green hydrogen. Herein, an electrochemical activation approach was applied to design 6.7 Rh–Ni2P-800CV electrocatalysts in alkaline electrolytes. The results confirm that the generation of metal oxide sites through the electrochemical activation strategy can effectively improve the intrinsic activity of 6.7 Rh–Ni2P-800CV. The density functional calculations further confirm that metal oxide active sites are favorable for H2O adsorption and activation and H* adsorption/desorption. The 6.7 Rh–Ni2P-800CV possesses significantly enhanced HER performance with low overpotential (25 mV at 10 mA·cm−2), small Tafel (60 mV·dec−1) and robust stability in 1.0 M KOH, outperforming Pt/C and 6.7 Rh–Ni2P counterparts. Meanwhile, 6.7 Rh–Ni2P-800CV can even operate at a large current density (550 mA·cm−2) up to 90 h with an overpotential of 320 mV, which meets the requirements of industrial water splitting. What’s more, the overall water-splitting systems (6.7 Rh–Ni2P-800CV || 6.7 Rh–Ni2P-800CV) can be directly driven by the solar cell. This work highlights that electrochemical activation technology provides a robust avenue toward constructing efficient electrocatalysts for sustainable energy conversion.

Graphical abstract

Abstract Image

电化学活化的 Rh-Ni2P 电催化剂金属氧化物位点用于高效碱性氢进化反应
高效氢进化反应(HER)电催化剂在生成绿色氢气方面发挥着至关重要的作用。本文采用电化学活化方法设计了碱性电解质中的 6.7 Rh-Ni2P-800CV 电催化剂。结果证实,通过电化学活化策略生成金属氧化物位点可有效提高 6.7 Rh-Ni2P-800CV 的内在活性。密度泛函计算进一步证实,金属氧化物活性位点有利于 H2O 的吸附和活化以及 H* 的吸附/解吸。6.7 Rh-Ni2P-800CV 的 HER 性能显著提高,过电位低(10 mA-cm-2 时为 25 mV),在 1.0 M KOH 中的 Tafel 值小(60 mV-dec-1),稳定性强,优于 Pt/C 和 6.7 Rh-Ni2P。同时,6.7 Rh-Ni2P-800CV 甚至可以在大电流密度(550 mA-cm-2)下运行长达 90 小时,过电位为 320 mV,满足了工业水分离的要求。更重要的是,整个水分离系统(6.7 Rh-Ni2P-800CV ||| 6.7 Rh-Ni2P-800CV)可由太阳能电池直接驱动。这项工作突出表明,电化学活化技术为构建可持续能源转换的高效电催化剂提供了强有力的途径。 图文摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信