Pan Zhang, Xiong-Jun Liu, Guang-Yu He, Fu-Kuo Chiang, Hui Wang, Yuan Wu, Sui-He Jiang, Xiao-Bin Zhang, Zhao-Ping Lu
{"title":"Novel high-entropy ultra-high temperature ceramics with enhanced ablation resistance","authors":"Pan Zhang, Xiong-Jun Liu, Guang-Yu He, Fu-Kuo Chiang, Hui Wang, Yuan Wu, Sui-He Jiang, Xiao-Bin Zhang, Zhao-Ping Lu","doi":"10.1007/s12598-024-02904-5","DOIUrl":null,"url":null,"abstract":"<div><p>Ultra-high temperature ceramics (UHTCs) offer great potential for applications in extreme service environments, such as hypersonic vehicles, rockets and re-entry spacecraft. However, the severe ablation caused by high-speed heat flow scouring and high-temperature oxidation limits the engineering application of UHTCs. In this work, we report a novel high-entropy UHTC (Ti<sub>0.2</sub>Zr<sub>0.2</sub>V<sub>0.2</sub>Nb<sub>0.2</sub>Cr<sub>0.2</sub>)(C<sub>0.5</sub>N<sub>0.5</sub>), which exhibits superior ablation resistance and light weight compared with traditional UHTCs. Specifically, at a temperature of 2650 K, the mass ablation rate of the material was measured as 1.025 × 10<sup>−2</sup> g·s<sup>−1</sup>, and the density was calculated to be 6.7 g·cm<sup>−3</sup>. The impressive ablation resistance of (Ti<sub>0.2</sub>Zr<sub>0.2</sub>V<sub>0.2</sub>Nb<sub>0.2</sub>Cr<sub>0.2</sub>)(C<sub>0.5</sub>N<sub>0.5</sub>) is attributed to the incorporation of a self-healing mechanism, which is associated with the in-situ formation of a medium-entropy oxide (TiVCr)O<sub>2</sub> during the ablation process. The medium-entropy oxide can seal pores and cracks to retard oxygen diffusion and prevent the material from fragmentation, thereby resulting in outstanding ablation resistance.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"43 12","pages":"6559 - 6570"},"PeriodicalIF":9.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02904-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ultra-high temperature ceramics (UHTCs) offer great potential for applications in extreme service environments, such as hypersonic vehicles, rockets and re-entry spacecraft. However, the severe ablation caused by high-speed heat flow scouring and high-temperature oxidation limits the engineering application of UHTCs. In this work, we report a novel high-entropy UHTC (Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.5N0.5), which exhibits superior ablation resistance and light weight compared with traditional UHTCs. Specifically, at a temperature of 2650 K, the mass ablation rate of the material was measured as 1.025 × 10−2 g·s−1, and the density was calculated to be 6.7 g·cm−3. The impressive ablation resistance of (Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.5N0.5) is attributed to the incorporation of a self-healing mechanism, which is associated with the in-situ formation of a medium-entropy oxide (TiVCr)O2 during the ablation process. The medium-entropy oxide can seal pores and cracks to retard oxygen diffusion and prevent the material from fragmentation, thereby resulting in outstanding ablation resistance.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.