Synergistic intermolecular hydrogen-bonded cross-linking and steric hindrance effects enabling pomegranate-type LMFP@C for Li+ storage

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hui Li, Yun Luo, Shu-Zhe Yang, Sheng Guo, Zhe Gao, Jian-Ming Zheng, Ning Ren, Yu-Jin Tong, Hao Luo, Mi Lu
{"title":"Synergistic intermolecular hydrogen-bonded cross-linking and steric hindrance effects enabling pomegranate-type LMFP@C for Li+ storage","authors":"Hui Li,&nbsp;Yun Luo,&nbsp;Shu-Zhe Yang,&nbsp;Sheng Guo,&nbsp;Zhe Gao,&nbsp;Jian-Ming Zheng,&nbsp;Ning Ren,&nbsp;Yu-Jin Tong,&nbsp;Hao Luo,&nbsp;Mi Lu","doi":"10.1007/s12598-024-02914-3","DOIUrl":null,"url":null,"abstract":"<div><p>LiMn<sub><i>x</i></sub>Fe<sub>1−<i>x</i></sub>PO<sub>4</sub> is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density. However, the poor electrochemical kinetics and structural instability currently hinder its broader application. Herein, inspired by the hydrogen-bonded cross-linking and steric hindrance effect between short-chain polymer molecules (polyethylene glycol-400, PEG-400), the pomegranate-type LiMn<sub>0.5</sub>Fe<sub>0.5</sub>PO<sub>4</sub>-0.5@C (P-LMFP@C) cathode materials with 3D ion/electron dual-conductive network structure were constructed through ball mill-assisted spray-drying method. The intermolecular effects of PEG-400 promote the spheroidization and uniform PEG coating of LMFP precursor, which prevents agglomeration during sintering. The 3D ion/electron dual-conductive network structure in P-LMFP@C accelerates the Li<sup>+</sup> transport kinetics, improving the rate performance and cycling stability. As a result, the designed P-LMFP@C has remarkable electrochemical behavior, boasting excellent capacity retention (98% after 100 cycles at the 1C rate) and rate capability (91 mAh·g<sup>−1</sup> at 20C). Such strategy introduces a novel window for designing high-performance olivine cathodes and offers compatibility with a range of energy storage materials for diverse applications.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 1","pages":"147 - 157"},"PeriodicalIF":9.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02914-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

LiMnxFe1−xPO4 is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density. However, the poor electrochemical kinetics and structural instability currently hinder its broader application. Herein, inspired by the hydrogen-bonded cross-linking and steric hindrance effect between short-chain polymer molecules (polyethylene glycol-400, PEG-400), the pomegranate-type LiMn0.5Fe0.5PO4-0.5@C (P-LMFP@C) cathode materials with 3D ion/electron dual-conductive network structure were constructed through ball mill-assisted spray-drying method. The intermolecular effects of PEG-400 promote the spheroidization and uniform PEG coating of LMFP precursor, which prevents agglomeration during sintering. The 3D ion/electron dual-conductive network structure in P-LMFP@C accelerates the Li+ transport kinetics, improving the rate performance and cycling stability. As a result, the designed P-LMFP@C has remarkable electrochemical behavior, boasting excellent capacity retention (98% after 100 cycles at the 1C rate) and rate capability (91 mAh·g−1 at 20C). Such strategy introduces a novel window for designing high-performance olivine cathodes and offers compatibility with a range of energy storage materials for diverse applications.

Graphical abstract

Abstract Image

分子间氢键交联和立体阻碍效应的协同作用使石榴型 LMFP@C 可用于储存 Li+
LiMnxFe1-xPO4 具有高安全性、4.1 V 的高工作电压和高能量密度,是一种很有前途的阴极候选材料。然而,较差的电化学动力学性能和结构不稳定性目前阻碍了它的广泛应用。本文受短链聚合物分子(聚乙二醇-400,PEG-400)间氢键交联和立体阻碍效应的启发,通过球磨辅助喷雾干燥法构建了具有三维离子/电子双导网络结构的石榴型 LiMn0.5Fe0.5PO4-0.5@C(P-LMFP@C)正极材料。PEG-400 的分子间效应促进了 LMFP 前驱体的球化和 PEG 涂层的均匀性,从而防止了烧结过程中的团聚。P-LMFP@C 中的三维离子/电子双导网络结构加速了 Li+ 的传输动力学,提高了速率性能和循环稳定性。因此,所设计的 P-LMFP@C 具有显著的电化学性能,具有出色的容量保持率(在 1C 速率下循环 100 次后保持 98%)和速率能力(在 20C 速率下保持 91 mAh-g-1)。这种策略为设计高性能橄榄石阴极打开了一扇新窗口,并为各种应用提供了与一系列储能材料的兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信