{"title":"Modularized neural network incorporating physical priors for future building energy modeling","authors":"","doi":"10.1016/j.patter.2024.101029","DOIUrl":null,"url":null,"abstract":"<p>Building energy modeling (BEM) is fundamental for achieving optimized energy control, resilient retrofit designs, and sustainable urbanization to mitigate climate change. However, traditional BEM requires detailed building information, expert knowledge, substantial modeling efforts, and customized case-by-case calibrations. This process must be repeated for every building, thereby limiting its scalability. To address these limitations, we developed a modularized neural network incorporating physical priors (ModNN), which is improved by its model structure incorporating heat balance equations, physically consistent model constraints, and data-driven modular design that can allow for multiple-building applications through model sharing and inheritance. We demonstrated its scalability in four cases: load prediction, indoor environment modeling, building retrofitting, and energy optimization. This approach provides guidance for future BEM by incorporating physical priors into data-driven models without extensive modeling efforts, paving the way for large-scale BEM, energy management, retrofit designs, and buildings-to-grid integration.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"80 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Building energy modeling (BEM) is fundamental for achieving optimized energy control, resilient retrofit designs, and sustainable urbanization to mitigate climate change. However, traditional BEM requires detailed building information, expert knowledge, substantial modeling efforts, and customized case-by-case calibrations. This process must be repeated for every building, thereby limiting its scalability. To address these limitations, we developed a modularized neural network incorporating physical priors (ModNN), which is improved by its model structure incorporating heat balance equations, physically consistent model constraints, and data-driven modular design that can allow for multiple-building applications through model sharing and inheritance. We demonstrated its scalability in four cases: load prediction, indoor environment modeling, building retrofitting, and energy optimization. This approach provides guidance for future BEM by incorporating physical priors into data-driven models without extensive modeling efforts, paving the way for large-scale BEM, energy management, retrofit designs, and buildings-to-grid integration.
建筑能源建模(BEM)是实现优化能源控制、弹性改造设计和可持续城市化以减缓气候变化的基础。然而,传统的 BEM 需要详细的建筑信息、专家知识、大量建模工作以及定制的个案校准。每个建筑都必须重复这一过程,从而限制了其可扩展性。为了解决这些局限性,我们开发了一种包含物理先验的模块化神经网络(ModNN),其模型结构包含热平衡方程、物理上一致的模型约束以及数据驱动的模块化设计,可通过模型共享和继承实现多建筑应用。我们在负载预测、室内环境建模、建筑改造和能源优化等四个案例中展示了其可扩展性。这种方法无需大量建模工作就能将物理先验纳入数据驱动模型,为未来的 BEM 提供了指导,为大规模 BEM、能源管理、改造设计和楼宇并网集成铺平了道路。