Hybrid bilayers of carbon/NiBr2 anchoring on FeSiB surface for enhanced microwave absorption coupling with smart discoloration

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jun-Feng Wang, Min Xia, Jian-Ning Sun, Hong-Yan Zhang, Qi-Hui Sun, Jun-Wei Wang, Nasir Mahmood, Xian Jian
{"title":"Hybrid bilayers of carbon/NiBr2 anchoring on FeSiB surface for enhanced microwave absorption coupling with smart discoloration","authors":"Jun-Feng Wang,&nbsp;Min Xia,&nbsp;Jian-Ning Sun,&nbsp;Hong-Yan Zhang,&nbsp;Qi-Hui Sun,&nbsp;Jun-Wei Wang,&nbsp;Nasir Mahmood,&nbsp;Xian Jian","doi":"10.1007/s12598-024-02913-4","DOIUrl":null,"url":null,"abstract":"<div><p>Developing bifunctional materials with smart discoloration and microwave absorption properties has attracted widespread interest in microwave absorption/shielding, yet it is challenging for reversible discoloration performance in humid (such as forest) and dry (desert) environments. Herein, we combined catalytic chemical vapor deposition (CCVD) technology and a hydrothermal synthesis method to develop a FeSiB@C@NiBr<sub>2</sub> atomic-scale double-shell gradient structure with rich interfaces. These nanosheet arrays favor interface polarization, impedance matching, and dipole polarization of the material, thereby optimizing the microwave absorption performance. The optimal reflection loss (RL) value of FeSiB@C@NiBr<sub>2</sub> reached − 59.6 dB at 9.2 GHz, and the effective absorption bandwidth (EAB) reached 7.0 GHz at a thickness of 2.5 mm. Compared with pure FeSiB (RL<sub>min</sub> of − 13.5 dB), the RL<sub>min</sub> value of the absorber designed by this method increased by ~ 3 times. The color of NiBr<sub>2</sub> in the outermost nanosheet arrays changes between yellow and green in the case of water molecule harvesting and loss, respectively. This novel FeSiB@C@NiBr<sub>2</sub> composite structure material is expected to provide a promising platform for wave-absorbing and smart discoloring materials.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 1","pages":"489 - 502"},"PeriodicalIF":9.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02913-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing bifunctional materials with smart discoloration and microwave absorption properties has attracted widespread interest in microwave absorption/shielding, yet it is challenging for reversible discoloration performance in humid (such as forest) and dry (desert) environments. Herein, we combined catalytic chemical vapor deposition (CCVD) technology and a hydrothermal synthesis method to develop a FeSiB@C@NiBr2 atomic-scale double-shell gradient structure with rich interfaces. These nanosheet arrays favor interface polarization, impedance matching, and dipole polarization of the material, thereby optimizing the microwave absorption performance. The optimal reflection loss (RL) value of FeSiB@C@NiBr2 reached − 59.6 dB at 9.2 GHz, and the effective absorption bandwidth (EAB) reached 7.0 GHz at a thickness of 2.5 mm. Compared with pure FeSiB (RLmin of − 13.5 dB), the RLmin value of the absorber designed by this method increased by ~ 3 times. The color of NiBr2 in the outermost nanosheet arrays changes between yellow and green in the case of water molecule harvesting and loss, respectively. This novel FeSiB@C@NiBr2 composite structure material is expected to provide a promising platform for wave-absorbing and smart discoloring materials.

Graphical abstract

Abstract Image

锚定在 FeSiB 表面的碳/NiBr2 混合双层膜,用于增强微波吸收耦合和智能变色
开发具有智能变色和微波吸收特性的双功能材料在微波吸收/屏蔽领域引起了广泛的兴趣,然而在潮湿(如森林)和干燥(沙漠)环境中实现可逆变色性能是一项挑战。在此,我们结合催化化学气相沉积(CCVD)技术和水热合成方法,开发出了具有丰富界面的 FeSiB@C@NiBr2 原子尺度双壳梯度结构。这些纳米片阵列有利于材料的界面极化、阻抗匹配和偶极极化,从而优化了微波吸收性能。在厚度为 2.5 mm 时,FeSiB@C@NiBr2 的最佳反射损耗(RL)值在 9.2 GHz 时达到 - 59.6 dB,有效吸收带宽(EAB)达到 7.0 GHz。与纯 FeSiB(RLmin 为 - 13.5 dB)相比,用这种方法设计的吸收器的 RLmin 值提高了约 3 倍。最外层纳米片阵列中 NiBr2 的颜色在水分子收集和损失情况下分别在黄色和绿色之间变化。这种新型 FeSiB@C@NiBr2 复合结构材料有望为吸波材料和智能变色材料提供一个前景广阔的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信