MLMT-CNN for Object Detection and Segmentation in Multi-layer and Multi-spectral Images

Majedaldein Almahasneh, Adeline Paiement, Xianghua Xie, Jean Aboudarham
{"title":"MLMT-CNN for Object Detection and Segmentation in Multi-layer and Multi-spectral Images","authors":"Majedaldein Almahasneh, Adeline Paiement, Xianghua Xie, Jean Aboudarham","doi":"arxiv-2407.14473","DOIUrl":null,"url":null,"abstract":"Precisely localising solar Active Regions (AR) from multi-spectral images is\na challenging but important task in understanding solar activity and its\ninfluence on space weather. A main challenge comes from each modality capturing\na different location of the 3D objects, as opposed to typical multi-spectral\nimaging scenarios where all image bands observe the same scene. Thus, we refer\nto this special multi-spectral scenario as multi-layer. We present a multi-task\ndeep learning framework that exploits the dependencies between image bands to\nproduce 3D AR localisation (segmentation and detection) where different image\nbands (and physical locations) have their own set of results. Furthermore, to\naddress the difficulty of producing dense AR annotations for training\nsupervised machine learning (ML) algorithms, we adapt a training strategy based\non weak labels (i.e. bounding boxes) in a recursive manner. We compare our\ndetection and segmentation stages against baseline approaches for solar image\nanalysis (multi-channel coronal hole detection, SPOCA for ARs) and\nstate-of-the-art deep learning methods (Faster RCNN, U-Net). Additionally, both\ndetection a nd segmentation stages are quantitatively validated on artificially\ncreated data of similar spatial configurations made from annotated multi-modal\nmagnetic resonance images. Our framework achieves an average of 0.72 IoU\n(segmentation) and 0.90 F1 score (detection) across all modalities, comparing\nto the best performing baseline methods with scores of 0.53 and 0.58,\nrespectively, on the artificial dataset, and 0.84 F1 score in the AR detection\ntask comparing to baseline of 0.82 F1 score. Our segmentation results are\nqualitatively validated by an expert on real ARs.","PeriodicalId":501423,"journal":{"name":"arXiv - PHYS - Space Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Space Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Precisely localising solar Active Regions (AR) from multi-spectral images is a challenging but important task in understanding solar activity and its influence on space weather. A main challenge comes from each modality capturing a different location of the 3D objects, as opposed to typical multi-spectral imaging scenarios where all image bands observe the same scene. Thus, we refer to this special multi-spectral scenario as multi-layer. We present a multi-task deep learning framework that exploits the dependencies between image bands to produce 3D AR localisation (segmentation and detection) where different image bands (and physical locations) have their own set of results. Furthermore, to address the difficulty of producing dense AR annotations for training supervised machine learning (ML) algorithms, we adapt a training strategy based on weak labels (i.e. bounding boxes) in a recursive manner. We compare our detection and segmentation stages against baseline approaches for solar image analysis (multi-channel coronal hole detection, SPOCA for ARs) and state-of-the-art deep learning methods (Faster RCNN, U-Net). Additionally, both detection a nd segmentation stages are quantitatively validated on artificially created data of similar spatial configurations made from annotated multi-modal magnetic resonance images. Our framework achieves an average of 0.72 IoU (segmentation) and 0.90 F1 score (detection) across all modalities, comparing to the best performing baseline methods with scores of 0.53 and 0.58, respectively, on the artificial dataset, and 0.84 F1 score in the AR detection task comparing to baseline of 0.82 F1 score. Our segmentation results are qualitatively validated by an expert on real ARs.
用于多层和多光谱图像中物体检测与分割的 MLMT-CNN
从多光谱图像中精确定位太阳活动区(AR)是了解太阳活动及其对空间天气影响的一项具有挑战性但又十分重要的任务。与所有图像波段都观测同一场景的典型多光谱成像场景不同,每种模式捕捉到的三维物体的位置都不同,这是一个主要挑战。因此,我们将这种特殊的多光谱场景称为多层。我们提出了一个多任务深度学习框架,利用图像波段之间的依赖关系来生成三维 AR 定位(分割和检测),其中不同的图像波段(和物理位置)有各自的结果集。此外,为了解决为训练监督机器学习(ML)算法而生成密集 AR 注释的困难,我们以递归方式调整了基于弱标签(即边界框)的训练策略。我们将我们的检测和分割阶段与太阳图像分析的基准方法(多通道冠状孔检测、AR 的 SPOCA)和最先进的深度学习方法(Faster RCNN、U-Net)进行了比较。此外,检测和分割阶段都在人工创建的类似空间配置数据上进行了定量验证,这些数据来自有注释的多模态磁共振图像。我们的框架在所有模式下的平均 IoU(分割)和 F1 分数(检测)分别为 0.72 和 0.90,而在人工数据集上表现最好的基线方法的平均 IoU 和 F1 分数分别为 0.53 和 0.58,在 AR 检测任务中的平均 F1 分数为 0.84,而基线方法的平均 F1 分数为 0.82。我们的分割结果得到了真实 AR 专家的定性验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信