Marcus McMahon, Jeremy Goldin, Elizabeth Susan Kealy, Darrel Joseph Wicks, Eugene Zilberg, Warwick Freeman, Behzad Aliahmad
{"title":"Performance Investigation of Somfit Sleep Staging Algorithm","authors":"Marcus McMahon, Jeremy Goldin, Elizabeth Susan Kealy, Darrel Joseph Wicks, Eugene Zilberg, Warwick Freeman, Behzad Aliahmad","doi":"10.2147/nss.s463026","DOIUrl":null,"url":null,"abstract":"<strong>Purpose:</strong> To investigate accuracy of the sleep staging algorithm in a new miniaturized home sleep monitoring device – Compumedics® Somfit. Somfit is attached to patient’s forehead and combines channels specified for a pulse arterial tonometry (PAT)-based home sleep apnea testing (HSAT) device with the neurological signals. Somfit sleep staging deep learning algorithm is based on convolutional neural network architecture.<br/><strong>Patients and Methods:</strong> One hundred and ten participants referred for sleep investigation with suspected or preexisting obstructive sleep apnea (OSA) in need of a review were enrolled into the study involving simultaneous recording of full overnight polysomnography (PSG) and Somfit data. The recordings were conducted at three centers in Australia. The reported statistics include standard measures of agreement between Somfit automatic hypnogram and consensus PSG hypnogram.<br/><strong>Results:</strong> Overall percent agreement across five sleep stages (N1, N2, N3, REM, and wake) between Somfit automatic and consensus PSG hypnograms was 76.14 (SE: 0.79). The percent agreements between different pairs of sleep technologists’ PSG hypnograms varied from 74.36 (1.93) to 85.50 (0.64), with interscorer agreement being greater for scorers from the same sleep laboratory. The estimate of kappa between Somfit and consensus PSG was 0.672 (0.002). Percent agreement for sleep/wake discrimination was 89.30 (0.37). The accuracy of Somfit sleep staging algorithm varied with increasing OSA severity – percent agreement was 79.67 (1.87) for the normal subjects, 77.38 (1.06) for mild OSA, 74.83 (1.79) for moderate OSA and 72.93 (1.68) for severe OSA.<br/><strong>Conclusion:</strong> Agreement between Somfit and PSG hypnograms was non-inferior to PSG interscorer agreement for a number of scorers, thus confirming acceptability of electrode placement at the center of the forehead. The directions for algorithm improvement include additional arousal detection, integration of motion and oximetry signals and separate inference models for individual sleep stages.<br/><br/><strong>Keywords:</strong> home sleep apnea testing, polysomnography, forehead electroencephalography, deep learning, interscorer agreement<br/>","PeriodicalId":18896,"journal":{"name":"Nature and Science of Sleep","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature and Science of Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/nss.s463026","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To investigate accuracy of the sleep staging algorithm in a new miniaturized home sleep monitoring device – Compumedics® Somfit. Somfit is attached to patient’s forehead and combines channels specified for a pulse arterial tonometry (PAT)-based home sleep apnea testing (HSAT) device with the neurological signals. Somfit sleep staging deep learning algorithm is based on convolutional neural network architecture. Patients and Methods: One hundred and ten participants referred for sleep investigation with suspected or preexisting obstructive sleep apnea (OSA) in need of a review were enrolled into the study involving simultaneous recording of full overnight polysomnography (PSG) and Somfit data. The recordings were conducted at three centers in Australia. The reported statistics include standard measures of agreement between Somfit automatic hypnogram and consensus PSG hypnogram. Results: Overall percent agreement across five sleep stages (N1, N2, N3, REM, and wake) between Somfit automatic and consensus PSG hypnograms was 76.14 (SE: 0.79). The percent agreements between different pairs of sleep technologists’ PSG hypnograms varied from 74.36 (1.93) to 85.50 (0.64), with interscorer agreement being greater for scorers from the same sleep laboratory. The estimate of kappa between Somfit and consensus PSG was 0.672 (0.002). Percent agreement for sleep/wake discrimination was 89.30 (0.37). The accuracy of Somfit sleep staging algorithm varied with increasing OSA severity – percent agreement was 79.67 (1.87) for the normal subjects, 77.38 (1.06) for mild OSA, 74.83 (1.79) for moderate OSA and 72.93 (1.68) for severe OSA. Conclusion: Agreement between Somfit and PSG hypnograms was non-inferior to PSG interscorer agreement for a number of scorers, thus confirming acceptability of electrode placement at the center of the forehead. The directions for algorithm improvement include additional arousal detection, integration of motion and oximetry signals and separate inference models for individual sleep stages.
Keywords: home sleep apnea testing, polysomnography, forehead electroencephalography, deep learning, interscorer agreement
期刊介绍:
Nature and Science of Sleep is an international, peer-reviewed, open access journal covering all aspects of sleep science and sleep medicine, including the neurophysiology and functions of sleep, the genetics of sleep, sleep and society, biological rhythms, dreaming, sleep disorders and therapy, and strategies to optimize healthy sleep.
Specific topics covered in the journal include:
The functions of sleep in humans and other animals
Physiological and neurophysiological changes with sleep
The genetics of sleep and sleep differences
The neurotransmitters, receptors and pathways involved in controlling both sleep and wakefulness
Behavioral and pharmacological interventions aimed at improving sleep, and improving wakefulness
Sleep changes with development and with age
Sleep and reproduction (e.g., changes across the menstrual cycle, with pregnancy and menopause)
The science and nature of dreams
Sleep disorders
Impact of sleep and sleep disorders on health, daytime function and quality of life
Sleep problems secondary to clinical disorders
Interaction of society with sleep (e.g., consequences of shift work, occupational health, public health)
The microbiome and sleep
Chronotherapy
Impact of circadian rhythms on sleep, physiology, cognition and health
Mechanisms controlling circadian rhythms, centrally and peripherally
Impact of circadian rhythm disruptions (including night shift work, jet lag and social jet lag) on sleep, physiology, cognition and health
Behavioral and pharmacological interventions aimed at reducing adverse effects of circadian-related sleep disruption
Assessment of technologies and biomarkers for measuring sleep and/or circadian rhythms
Epigenetic markers of sleep or circadian disruption.