Randomized greedy magic point selection schemes for nonlinear model reduction

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Ralf Zimmermann, Kai Cheng
{"title":"Randomized greedy magic point selection schemes for nonlinear model reduction","authors":"Ralf Zimmermann,&nbsp;Kai Cheng","doi":"10.1007/s10444-024-10172-1","DOIUrl":null,"url":null,"abstract":"<div><p>An established way to tackle model nonlinearities in projection-based model reduction is via relying on partial information. This idea is shared by the methods of gappy proper orthogonal decomposition (POD), missing point estimation (MPE), masked projection, hyper reduction, and the (discrete) empirical interpolation method (DEIM). The selected indices of the partial information components are often referred to as “magic points.” The original contribution of the work at hand is a novel randomized greedy magic point selection. It is known that the greedy method is associated with minimizing the norm of an oblique projection operator, which, in turn, is associated with solving a sequence of rank-one SVD update problems. We propose simplification measures so that the resulting greedy point selection has the following main features: (1) The inherent rank-one SVD update problem is tackled in a way, such that its dimension does not grow with the number of selected magic points. (2) The approach is online efficient in the sense that the computational costs are independent from the dimension of the full-scale model. To the best of our knowledge, this is the first greedy magic point selection that features this property. We illustrate the findings by means of numerical examples. We find that the computational cost of the proposed method is orders of magnitude lower than that of its deterministic counterpart. Nevertheless, the prediction accuracy is just as good if not better. When compared to a state-of-the-art randomized method based on leverage scores, the randomized greedy method outperforms its competitor.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10172-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10172-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An established way to tackle model nonlinearities in projection-based model reduction is via relying on partial information. This idea is shared by the methods of gappy proper orthogonal decomposition (POD), missing point estimation (MPE), masked projection, hyper reduction, and the (discrete) empirical interpolation method (DEIM). The selected indices of the partial information components are often referred to as “magic points.” The original contribution of the work at hand is a novel randomized greedy magic point selection. It is known that the greedy method is associated with minimizing the norm of an oblique projection operator, which, in turn, is associated with solving a sequence of rank-one SVD update problems. We propose simplification measures so that the resulting greedy point selection has the following main features: (1) The inherent rank-one SVD update problem is tackled in a way, such that its dimension does not grow with the number of selected magic points. (2) The approach is online efficient in the sense that the computational costs are independent from the dimension of the full-scale model. To the best of our knowledge, this is the first greedy magic point selection that features this property. We illustrate the findings by means of numerical examples. We find that the computational cost of the proposed method is orders of magnitude lower than that of its deterministic counterpart. Nevertheless, the prediction accuracy is just as good if not better. When compared to a state-of-the-art randomized method based on leverage scores, the randomized greedy method outperforms its competitor.

Abstract Image

用于非线性模型还原的随机贪婪魔法点选择方案
在基于投影的模型还原中,一种解决模型非线性问题的既定方法是依靠部分信息。这种思路与加普适当正交分解法(POD)、缺失点估计法(MPE)、掩蔽投影法、超还原法和(离散)经验插值法(DEIM)等方法相同。部分信息成分的选定指数通常被称为 "魔法点"。这项工作的原创性贡献在于一种新颖的随机贪婪魔法点选择方法。众所周知,贪婪法与最小化斜投影算子的规范有关,而斜投影算子的规范又与解决一系列秩一 SVD 更新问题有关。我们提出了简化措施,使贪心选点法具有以下主要特点:(1) 解决固有的秩一 SVD 更新问题的方式,使其维度不会随着所选魔法点的数量而增长。(2) 该方法在线效率高,计算成本与完整模型的维度无关。据我们所知,这是第一个具有这种特性的贪婪魔法点选择方法。我们通过数值示例来说明我们的发现。我们发现,拟议方法的计算成本比确定性方法低几个数量级。尽管如此,预测精度却不相上下,甚至更好。与最先进的基于杠杆分数的随机方法相比,随机贪婪方法的性能优于竞争对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信