Boosting CO2 separation in porphyrinic MOF-based mixed matrix membranes via central metal atom integration

{"title":"Boosting CO2 separation in porphyrinic MOF-based mixed matrix membranes via central metal atom integration","authors":"","doi":"10.1016/j.ccst.2024.100252","DOIUrl":null,"url":null,"abstract":"<div><p>As atmospheric CO<sub>2</sub> levels continue to rise, contributing to the climate crisis, there is an increasing urgency to separate this gas from others and to expedite related research. Metal-Organic Frameworks (MOFs), known for their porosity and tunability, have already made significant impacts in this field, particularly to be used as part of a membrane material. This study introduces a novel method to enhance the CO<sub>2</sub> separation capabilities of MOFs-based mixed matrix membranes (MMMs). Instead of taking the traditional approach by functionalizing the MOF's ligands or varying the metal or metal-oxo MOF nodes, we harness the properties of metal atoms by integrating them as central elements within porphyrinic MOF linkers through a simple post-metalation method. As a result, by incorporating the post-metalated MOF-525 as fillers into the 6FDA-DAM (6FDA: 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride; DAM: 2,4,6-trimethyl-1,3-diaminobenzene) polymer to fabricate MMMs, we effectively demonstrate improved CO<sub>2</sub>/N<sub>2</sub> and CO<sub>2</sub>/CH<sub>4</sub> gas separation capabilities of around 20 % without the necessity to use a very high MOF loading (only 2 wt%). Further analysis on the gas transport reveals that such a performance improvement mainly comes from the enhanced CO<sub>2</sub> solubility, which might be attributed to the presence of the metal atoms in the post-metalated MOF 525. Lastly, in order to get a more comprehensive understanding, we also carry out a computational study as a tool to validate and predict the experimental results of our MMMs. This study then opens up the possibility to further investigate the efficacy of introducing various metal atoms in other porphyrinic MOFs when they are used as fillers to significantly boost the CO<sub>2</sub> separation performance of MMMs.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000642/pdfft?md5=d85861dde780769783b34c30ed1ebd67&pid=1-s2.0-S2772656824000642-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824000642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As atmospheric CO2 levels continue to rise, contributing to the climate crisis, there is an increasing urgency to separate this gas from others and to expedite related research. Metal-Organic Frameworks (MOFs), known for their porosity and tunability, have already made significant impacts in this field, particularly to be used as part of a membrane material. This study introduces a novel method to enhance the CO2 separation capabilities of MOFs-based mixed matrix membranes (MMMs). Instead of taking the traditional approach by functionalizing the MOF's ligands or varying the metal or metal-oxo MOF nodes, we harness the properties of metal atoms by integrating them as central elements within porphyrinic MOF linkers through a simple post-metalation method. As a result, by incorporating the post-metalated MOF-525 as fillers into the 6FDA-DAM (6FDA: 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride; DAM: 2,4,6-trimethyl-1,3-diaminobenzene) polymer to fabricate MMMs, we effectively demonstrate improved CO2/N2 and CO2/CH4 gas separation capabilities of around 20 % without the necessity to use a very high MOF loading (only 2 wt%). Further analysis on the gas transport reveals that such a performance improvement mainly comes from the enhanced CO2 solubility, which might be attributed to the presence of the metal atoms in the post-metalated MOF 525. Lastly, in order to get a more comprehensive understanding, we also carry out a computational study as a tool to validate and predict the experimental results of our MMMs. This study then opens up the possibility to further investigate the efficacy of introducing various metal atoms in other porphyrinic MOFs when they are used as fillers to significantly boost the CO2 separation performance of MMMs.

通过中心金属原子整合促进卟啉基 MOF 混合基质膜中的二氧化碳分离
由于大气中的二氧化碳含量持续上升,造成了气候危机,因此将这种气体与其他气体分离并加快相关研究的紧迫性与日俱增。金属有机框架(MOFs)以其多孔性和可调性著称,已经在这一领域产生了重大影响,尤其是在用作膜材料的一部分时。本研究介绍了一种增强基于 MOFs 的混合基质膜 (MMM) 的二氧化碳分离能力的新方法。我们没有采用传统的方法对 MOF 的配体进行官能化处理或改变金属或金属-氧 MOF 节点,而是通过简单的后金属化方法将金属原子作为中心元素整合到卟啉类 MOF 链接物中,从而利用了金属原子的特性。因此,通过将金属化后的 MOF-525 作为填充物加入 6FDA-DAM (6FDA:2,2-双(3,4-二羧基苯基)六氟丙烷二酐;DAM:2,4,6-三甲基-1,3-二氨基苯)聚合物来制造 MMM,我们有效地证明了 CO2/N2 和 CO2/CH4 气体分离能力提高了约 20%,而无需使用很高的 MOF 负载(仅 2 wt%)。对气体传输的进一步分析表明,这种性能改善主要来自于二氧化碳溶解度的提高,这可能归因于后金属化 MOF 525 中金属原子的存在。最后,为了获得更全面的理解,我们还开展了一项计算研究,作为验证和预测 MMM 实验结果的工具。这项研究为进一步研究在其他卟啉类 MOF 中引入各种金属原子作为填充物以显著提高 MMM 的二氧化碳分离性能提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信