Electrochemical CO2 reduction to syngas on copper mesh electrode: Alloying strategy for tuning syngas composition

{"title":"Electrochemical CO2 reduction to syngas on copper mesh electrode: Alloying strategy for tuning syngas composition","authors":"","doi":"10.1016/j.ccst.2024.100254","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical CO<sub>2</sub> reduction to synthetic fuels and commodity chemicals using renewable energy offers a promising approach to mitigate CO<sub>2</sub> emissions and alleviate energy crisis. Copper-based catalysts show potential for electrochemical CO<sub>2</sub> reduction applications, while they face the key challenges of high potential, sluggish kinetics, and poor selectivity. In this work, Cu-Zn, Cu-Co, Cu-Cd, and Cu-In bimetallic catalysts are synthesized via the electrodeposition method for electrochemical CO<sub>2</sub> reduction to syngas with adjustable CO/H<sub>2</sub> ratios. The bimetallic catalysts are characterized using various techniques to reveal their crystalline structures, morphologies, and elemental compositions. The structure-property-activity relationships of these catalysts are investigated to identify optimal candidates for electrochemical CO<sub>2</sub> reduction applications. The findings reveal that the bare Cu mesh catalyst exhibits poor CO<sub>2</sub> reduction activity, and the products are dominated by hydrogen evolution reaction (HER). The bimetallic catalysts exhibit improved CO<sub>2</sub> reduction performance, with the Cu-Zn and Cu-Cd catalysts showing excellent activity, and the CO/H<sub>2</sub> ratio in syngas can be tuned over a wide range by adjusting the applied potential. The Cu-Zn and Cu-Cd catalysts demonstrate outstanding performance with Faradic efficiencies of ∼90 % and ∼80 % towards syngas production with CO/H<sub>2</sub> ratios of ∼2.0 and ∼1.5 at −0.81 and −1.01 V vs. RHE, respectively, making the produced syngas suitable for various industrial applications. Stability tests over 450 min show that the Cu-Zn and Cu-Cd catalysts maintain stable catalytic activity, syngas selectivity and CO/H<sub>2</sub> ratio, making them robust candidates for syngas production. The results will provide valuable insights into the design of robust catalysts for electrochemical CO<sub>2</sub> reduction, offering a promising path toward sustainable syngas production.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000666/pdfft?md5=9aaf6aba0cf5c39e6a3a32ca54c7a5a8&pid=1-s2.0-S2772656824000666-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824000666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical CO2 reduction to synthetic fuels and commodity chemicals using renewable energy offers a promising approach to mitigate CO2 emissions and alleviate energy crisis. Copper-based catalysts show potential for electrochemical CO2 reduction applications, while they face the key challenges of high potential, sluggish kinetics, and poor selectivity. In this work, Cu-Zn, Cu-Co, Cu-Cd, and Cu-In bimetallic catalysts are synthesized via the electrodeposition method for electrochemical CO2 reduction to syngas with adjustable CO/H2 ratios. The bimetallic catalysts are characterized using various techniques to reveal their crystalline structures, morphologies, and elemental compositions. The structure-property-activity relationships of these catalysts are investigated to identify optimal candidates for electrochemical CO2 reduction applications. The findings reveal that the bare Cu mesh catalyst exhibits poor CO2 reduction activity, and the products are dominated by hydrogen evolution reaction (HER). The bimetallic catalysts exhibit improved CO2 reduction performance, with the Cu-Zn and Cu-Cd catalysts showing excellent activity, and the CO/H2 ratio in syngas can be tuned over a wide range by adjusting the applied potential. The Cu-Zn and Cu-Cd catalysts demonstrate outstanding performance with Faradic efficiencies of ∼90 % and ∼80 % towards syngas production with CO/H2 ratios of ∼2.0 and ∼1.5 at −0.81 and −1.01 V vs. RHE, respectively, making the produced syngas suitable for various industrial applications. Stability tests over 450 min show that the Cu-Zn and Cu-Cd catalysts maintain stable catalytic activity, syngas selectivity and CO/H2 ratio, making them robust candidates for syngas production. The results will provide valuable insights into the design of robust catalysts for electrochemical CO2 reduction, offering a promising path toward sustainable syngas production.

Abstract Image

铜网电极上的电化学二氧化碳还原合成气:调整合成气成分的合金策略
利用可再生能源将二氧化碳电化学还原为合成燃料和商品化学品,为减少二氧化碳排放和缓解能源危机提供了一种前景广阔的方法。铜基催化剂在电化学二氧化碳还原应用中显示出潜力,但也面临着电位高、动力学缓慢和选择性差等主要挑战。本研究通过电沉积法合成了 Cu-Zn、Cu-Co、Cu-Cd 和 Cu-In 双金属催化剂,用于将 CO2 电化学还原为 CO/H2 比例可调的合成气。利用各种技术对双金属催化剂进行了表征,以揭示其晶体结构、形态和元素组成。研究了这些催化剂的结构-性能-活性关系,以确定二氧化碳电化学还原应用的最佳候选催化剂。研究结果表明,裸铜网催化剂的二氧化碳还原活性较差,产物以氢进化反应(HER)为主。双金属催化剂的二氧化碳还原性能有所提高,其中 Cu-Zn 和 Cu-Cd 催化剂表现出优异的活性,而且通过调节应用电位,可以在很大范围内调节合成气中的 CO/H2 比率。Cu-Zn 和 Cu-Cd 催化剂表现出卓越的性能,在 -0.81 和 -1.01 V 对 RHE 条件下,CO/H2 比率分别为 2.0 ∼ 2.0 和 1.5 ∼ 1.5 时,合成气生产的法拉第效率分别为 90 % 和 80 %,使生产的合成气适用于各种工业应用。超过 450 分钟的稳定性测试表明,Cu-Zn 和 Cu-Cd 催化剂能保持稳定的催化活性、合成气选择性和 CO/H2 比率,使它们成为合成气生产的可靠候选催化剂。这些结果将为设计用于电化学二氧化碳还原的稳健催化剂提供宝贵的见解,为实现可持续合成气生产提供了一条充满希望的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信