Chen Wang , Yingyu Liu , Baolin Wang , Zhenguo Liu , Yuchun Sun , Na Yang , Lei Sun , Chuanyong Zhu , Guihuan Yan , Chongqing Xu , Sihua Lu , Min Shao
{"title":"Comparison of NMHC measurements between 2010 and 2020 in Wuxi City, Yangtze River Delta region: Levels, compositions, sources, and impacts","authors":"Chen Wang , Yingyu Liu , Baolin Wang , Zhenguo Liu , Yuchun Sun , Na Yang , Lei Sun , Chuanyong Zhu , Guihuan Yan , Chongqing Xu , Sihua Lu , Min Shao","doi":"10.1016/j.apr.2024.102260","DOIUrl":null,"url":null,"abstract":"<div><p>Field observation analyses of volatile organic compounds (VOCs) have gained significant attention due to their potential explaining atmospheric temporal trends. This study measured non-methane hydrocarbons (NMHCs) in Wuxi City, located in the Yangtze River Delta (YRD) of China, in 2010 and 2020. The aim was to gain a better understanding of the ten-year change of VOCs in terms of their mixing ratios, sources, role in ozone, secondary organic aerosol (SOA) formation, and health risks. The average NMHC level 2020 was 20.67 ppbv, which indicated a 20% drop from 2010. A notable shift was observed in the chemical composition of NMHCs. The contribution of alkanes increased from 45% to 62% in 2020, while that of the aromatics decreased from 25% in 2010 to 21% in 2020. Ratio analysis and receptor modelling for 2010 and 2020 were used to identify the source changes of VOC species. The source apportionment model showed that the contribution of vehicle exhaust decreased from 34.5% to 20.9% from 2010 to 2020, and that of the solvent increased from 15.1% to 25.3%. The chemical reactivity results suggested that aromatics played significant roles in photochemical reactions in Wuxi City. The ozone formation potential (OFP) and SOA potential of VOCs also showed decreasing trends from 2010 to 2020. The total OFP of alkenes decreased by 34.0%, from 30.6 to 20.2 ppbvO<sub>3</sub>/ppbv. The total non-carcinogenic risk value for the key VOC species was 0.034 in 2010 and 0.024 in 2020. Although the carcinogenic risks for benzene have decreased significantly, the value is still above the acceptable carcinogenic risk level. The results of this study demonstrate the effectiveness of air pollution control measures in Wuxi City and highlight the positive impacts on reducing secondary pollution and health risks in this region over one decade.</p></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"15 10","pages":"Article 102260"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104224002253","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Field observation analyses of volatile organic compounds (VOCs) have gained significant attention due to their potential explaining atmospheric temporal trends. This study measured non-methane hydrocarbons (NMHCs) in Wuxi City, located in the Yangtze River Delta (YRD) of China, in 2010 and 2020. The aim was to gain a better understanding of the ten-year change of VOCs in terms of their mixing ratios, sources, role in ozone, secondary organic aerosol (SOA) formation, and health risks. The average NMHC level 2020 was 20.67 ppbv, which indicated a 20% drop from 2010. A notable shift was observed in the chemical composition of NMHCs. The contribution of alkanes increased from 45% to 62% in 2020, while that of the aromatics decreased from 25% in 2010 to 21% in 2020. Ratio analysis and receptor modelling for 2010 and 2020 were used to identify the source changes of VOC species. The source apportionment model showed that the contribution of vehicle exhaust decreased from 34.5% to 20.9% from 2010 to 2020, and that of the solvent increased from 15.1% to 25.3%. The chemical reactivity results suggested that aromatics played significant roles in photochemical reactions in Wuxi City. The ozone formation potential (OFP) and SOA potential of VOCs also showed decreasing trends from 2010 to 2020. The total OFP of alkenes decreased by 34.0%, from 30.6 to 20.2 ppbvO3/ppbv. The total non-carcinogenic risk value for the key VOC species was 0.034 in 2010 and 0.024 in 2020. Although the carcinogenic risks for benzene have decreased significantly, the value is still above the acceptable carcinogenic risk level. The results of this study demonstrate the effectiveness of air pollution control measures in Wuxi City and highlight the positive impacts on reducing secondary pollution and health risks in this region over one decade.
期刊介绍:
Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.