{"title":"Varied sensitivity to boscalid among different Clarireedia species causing dollar spot in turfgrass","authors":"","doi":"10.1016/j.pestbp.2024.106029","DOIUrl":null,"url":null,"abstract":"<div><p>Dollar spot, a highly destructive turfgrasses disease worldwide, is caused by multiple species within the genus <em>Clarireedia</em>. Previous research indicated varying sensitivity to boscalid among <em>Clarireedia</em> populations not historically exposed to succinate dehydrogenase inhibitors (SDHIs). This study confirms that the differential sensitivity pattern is inherent among different <em>Clarireedia</em> spp., utilizing a combination of phylogenetic analyses, in vitro cross-resistance assays, and genetic transformation of target genes with different mutations. Furthermore, greenhouse inoculation experiments revealed that the differential boscalid sensitivity did not lead to pathogenicity issues or fitness penalties, thereby not resulting in control failure by boscalid. This research underscores the importance of continuous monitoring of fungicide sensitivity trends and highlights the complexity of chemical control of dollar spot due to the inherent variability in fungicide sensitivity among different <em>Clarireedia</em> spp.</p></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357524002621","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dollar spot, a highly destructive turfgrasses disease worldwide, is caused by multiple species within the genus Clarireedia. Previous research indicated varying sensitivity to boscalid among Clarireedia populations not historically exposed to succinate dehydrogenase inhibitors (SDHIs). This study confirms that the differential sensitivity pattern is inherent among different Clarireedia spp., utilizing a combination of phylogenetic analyses, in vitro cross-resistance assays, and genetic transformation of target genes with different mutations. Furthermore, greenhouse inoculation experiments revealed that the differential boscalid sensitivity did not lead to pathogenicity issues or fitness penalties, thereby not resulting in control failure by boscalid. This research underscores the importance of continuous monitoring of fungicide sensitivity trends and highlights the complexity of chemical control of dollar spot due to the inherent variability in fungicide sensitivity among different Clarireedia spp.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.