Differential impacts of furfural and acetic acid on the bioenergetics and fermentation performance of Scheffersomyces stipitis

IF 2.4 3区 生物学 Q3 GENETICS & HEREDITY
José J. Saucedo-Gutierrez , Monserrat Escamilla-García , Aldo Amaro-Reyes , Andrés Carrillo-Garmendia , Luis A. Madrigal-Pérez , Carlos Regalado-González , José Á. Granados-Arvizu
{"title":"Differential impacts of furfural and acetic acid on the bioenergetics and fermentation performance of Scheffersomyces stipitis","authors":"José J. Saucedo-Gutierrez ,&nbsp;Monserrat Escamilla-García ,&nbsp;Aldo Amaro-Reyes ,&nbsp;Andrés Carrillo-Garmendia ,&nbsp;Luis A. Madrigal-Pérez ,&nbsp;Carlos Regalado-González ,&nbsp;José Á. Granados-Arvizu","doi":"10.1016/j.fgb.2024.103914","DOIUrl":null,"url":null,"abstract":"<div><p>Lignocellulosic material is a leading carbon source for economically viable biotechnological processes; however, compounds such furfural and acetic acid exhibit toxicity to yeasts. Nonetheless, research about the molecular mechanism of furfural and acetic acid toxicity is still scarce in yeasts like <em>Scheffersomyces stipitis</em>. Thus, this study aims to elucidate the impact of furfural and acetic acid on <em>S. stipitis</em> regarding bioenergetic and fermentation parameters. Here, we provide evidence that furfural and acetic acid induce a delay in cell growth and extend the lag phase. The mitochondrial membrane potential decreased in all treatments with no significant differences between inhibitors or concentrations. Interestingly, reactive oxygen species increased when the inhibitor concentrations were from 0.1 to 0.3 % (v/v). The glycolytic flux was not significantly (<em>p</em> &gt; 0.05) altered by acetic acid, but furfural caused different effects. Ethanol production decreased significantly (4.32 g·L<sup>-1</sup> in furfural and 5.06 g·L<sup>-1</sup> in acetic acid) compared to the control (26.3 g·L<sup>-1</sup>). In contrast, biomass levels were not significantly different in most treatments compared to the control. This study enhances our understanding of the effects of furfural and acetic acid at the mitochondrial level in a pentose-fermenting yeast like <em>S. stipitis</em>.</p></div>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1087184524000513","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Lignocellulosic material is a leading carbon source for economically viable biotechnological processes; however, compounds such furfural and acetic acid exhibit toxicity to yeasts. Nonetheless, research about the molecular mechanism of furfural and acetic acid toxicity is still scarce in yeasts like Scheffersomyces stipitis. Thus, this study aims to elucidate the impact of furfural and acetic acid on S. stipitis regarding bioenergetic and fermentation parameters. Here, we provide evidence that furfural and acetic acid induce a delay in cell growth and extend the lag phase. The mitochondrial membrane potential decreased in all treatments with no significant differences between inhibitors or concentrations. Interestingly, reactive oxygen species increased when the inhibitor concentrations were from 0.1 to 0.3 % (v/v). The glycolytic flux was not significantly (p > 0.05) altered by acetic acid, but furfural caused different effects. Ethanol production decreased significantly (4.32 g·L-1 in furfural and 5.06 g·L-1 in acetic acid) compared to the control (26.3 g·L-1). In contrast, biomass levels were not significantly different in most treatments compared to the control. This study enhances our understanding of the effects of furfural and acetic acid at the mitochondrial level in a pentose-fermenting yeast like S. stipitis.

Abstract Image

糠醛和乙酸对稻壳霉菌生物能和发酵性能的不同影响。
木质纤维素材料是经济可行的生物技术工艺的主要碳源;然而,糠醛和乙酸等化合物对酵母菌有毒性。然而,有关糠醛和乙酸对酵母(如稻草酵母菌)产生毒性的分子机制的研究仍然很少。因此,本研究旨在阐明糠醛和乙酸在生物能和发酵参数方面对锡氏酵母的影响。在此,我们提供了糠醛和乙酸会导致细胞生长延迟并延长滞后期的证据。在所有处理中,线粒体膜电位都会下降,不同抑制剂或浓度之间没有显著差异。有趣的是,当抑制剂浓度为 0.1 % 至 0.3 %(v/v)时,活性氧增加。乙酸对糖酵解通量的影响不大(p > 0.05),但糠醛的影响不同。与对照组(26.3 g-L-1)相比,乙醇产量明显下降(糠醛为 4.32 g-L-1,乙酸为 5.06 g-L-1)。相比之下,大多数处理的生物量水平与对照组相比没有明显差异。这项研究加深了我们对糠醛和乙酸在线粒体水平上对 stipitis 等戊糖发酵酵母的影响的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fungal Genetics and Biology
Fungal Genetics and Biology 生物-遗传学
CiteScore
6.20
自引率
3.30%
发文量
66
审稿时长
85 days
期刊介绍: Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny. Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists. Research Areas include: • Biochemistry • Cytology • Developmental biology • Evolutionary biology • Genetics • Molecular biology • Phylogeny • Physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信