Nina I Gabarayeva, Valentina V Grigorjeva, Dmitri A Britski
{"title":"Mechanisms of pollen wall development in Lysimachia vulgaris.","authors":"Nina I Gabarayeva, Valentina V Grigorjeva, Dmitri A Britski","doi":"10.1007/s00709-024-01970-x","DOIUrl":null,"url":null,"abstract":"<p><p>Exine, this complex sporopollenin-containing and highly variable among taxa envelope of the male gametophyte, consists of two layers, ectexine and endexine. We traced in detail the pollen wall development in Lysimachia vulgaris (Primulaceae), with emphasis on driving forces and critical ontogenetic time. By observation on the sequence of the emergent patterns and by analysis of their substructure with TEM, we intended to clarify the obvious and not-obvious ways of exine construction and to find out the common features in pattern development in other representatives in living nature. The ectexine and endexine ontogeny follows the main stages observed in many other species: first, the appearance of microspore plasma membrane invaginations with isotropic contents within, changed later to anisotropic state; then successive appearance of spherical, rod-like, and lamellate units in the periplasmic space. The lamellate endexine appears unusually early in the exine development. All these elements and their aggregations are manifestation of well-known physical phenomena: phase separation and micellar self-assembly. A consideration of similar surface patterns in very remote taxa suggests the participation in their development of some general nature phenomena as the lows of space-filling operations.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-01970-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Exine, this complex sporopollenin-containing and highly variable among taxa envelope of the male gametophyte, consists of two layers, ectexine and endexine. We traced in detail the pollen wall development in Lysimachia vulgaris (Primulaceae), with emphasis on driving forces and critical ontogenetic time. By observation on the sequence of the emergent patterns and by analysis of their substructure with TEM, we intended to clarify the obvious and not-obvious ways of exine construction and to find out the common features in pattern development in other representatives in living nature. The ectexine and endexine ontogeny follows the main stages observed in many other species: first, the appearance of microspore plasma membrane invaginations with isotropic contents within, changed later to anisotropic state; then successive appearance of spherical, rod-like, and lamellate units in the periplasmic space. The lamellate endexine appears unusually early in the exine development. All these elements and their aggregations are manifestation of well-known physical phenomena: phase separation and micellar self-assembly. A consideration of similar surface patterns in very remote taxa suggests the participation in their development of some general nature phenomena as the lows of space-filling operations.
花粉壁(Exine)是雄配子体的一种复杂的含孢粉蛋白的包被,在不同类群中变化很大,由外胚层和内胚层两层组成。我们详细追踪了Lysimachia vulgaris(报春花科)的花粉壁发育过程,重点研究了其驱动力和关键的发育时间。通过观察出现图案的顺序和用 TEM 分析其次级结构,我们希望弄清明显和不明显的外皮构造方式,并找出生物界中其他代表图案发育的共同特征。外胚层和内胚层的本体发育遵循在许多其他物种中观察到的主要阶段:首先,出现小孢子质膜内陷,内陷中含有各向同性的内容物,随后转变为各向异性的状态;然后,在质膜周围空间相继出现球状、棒状和片状单元。片状内胚层在外胚层发育过程中出现得特别早。所有这些元素及其聚集都是众所周知的物理现象:相分离和胶束自组装。对非常遥远的类群的类似表面模式的研究表明,在它们的发育过程中存在着一些普遍的自然现象,如空间填充操作的低点。
期刊介绍:
Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields:
cell biology of both single and multicellular organisms
molecular cytology
the cell cycle
membrane biology including biogenesis, dynamics, energetics and electrophysiology
inter- and intracellular transport
the cytoskeleton
organelles
experimental and quantitative ultrastructure
cyto- and histochemistry
Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".