Oral pre- and early postnatal cannabis exposure disinhibits ventral tegmental area dopamine neuron activity but does not influence cocaine preference in offspring in mice
Colleen S. Peterson, Samantha L. Baglot, Nada A. Sallam, Sarah Mina, Matthew N. Hill, Stephanie L. Borgland
{"title":"Oral pre- and early postnatal cannabis exposure disinhibits ventral tegmental area dopamine neuron activity but does not influence cocaine preference in offspring in mice","authors":"Colleen S. Peterson, Samantha L. Baglot, Nada A. Sallam, Sarah Mina, Matthew N. Hill, Stephanie L. Borgland","doi":"10.1002/jnr.25369","DOIUrl":null,"url":null,"abstract":"<p>Cannabis consumption has increased from 1.5% to 2.5% in Canada between 2012 and 2019. Clinical studies have indicated effects of prenatal cannabis exposure on birth weight, substance use, and neurodevelopmental disorders, but are confounded by several difficult to control variables. Animal models allow for examination of the mechanism of cannabis-induced changes in neurodevelopment and behavior, while controlling dose and timing. Several animal models of prenatal cannabis exposure exist which provide varying levels of construct validity, control of dose, and exposure to maternal stress. Using a voluntary oral consumption model, mouse dams received 5 mg/kg Δ9-tetrahydrocannabinol (THC) whole cannabis oil in peanut butter daily from gestational day 1 (GD1) to postnatal day 10 (PD10). At GD1, GD18, PD1, PD10, and PD15, maternal plasma was collected; pup brains were collected from GD18 onward. Pup brains had higher levels of THC and cannabidiol at each time point, each of which persisted in maternal plasma and pup brains past the end of treatment (PD15). Male and female adolescent offspring were examined for changes to ventral tegmental area (VTA) dopamine neuron activity and cocaine-seeking behavior. Prenatal and early postnatal (GD1–PD10) cannabis-exposed male, but not female mice had decreased gamma-aminobutyric acid (GABAergic) input, depolarized resting membrane potential, and increased spontaneous firing of VTA dopamine neurons. Cannabis-exposed offspring showed faster decay of N-methyl-D-aspartate (NMDA) currents in both sexes. However, no differences in cocaine-seeking behavior were noted. These data characterize a voluntary prenatal cannabis exposure model and demonstrates VTA dopamine neuronal activity is disinhibited in offspring.</p>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"102 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jnr.25369","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnr.25369","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cannabis consumption has increased from 1.5% to 2.5% in Canada between 2012 and 2019. Clinical studies have indicated effects of prenatal cannabis exposure on birth weight, substance use, and neurodevelopmental disorders, but are confounded by several difficult to control variables. Animal models allow for examination of the mechanism of cannabis-induced changes in neurodevelopment and behavior, while controlling dose and timing. Several animal models of prenatal cannabis exposure exist which provide varying levels of construct validity, control of dose, and exposure to maternal stress. Using a voluntary oral consumption model, mouse dams received 5 mg/kg Δ9-tetrahydrocannabinol (THC) whole cannabis oil in peanut butter daily from gestational day 1 (GD1) to postnatal day 10 (PD10). At GD1, GD18, PD1, PD10, and PD15, maternal plasma was collected; pup brains were collected from GD18 onward. Pup brains had higher levels of THC and cannabidiol at each time point, each of which persisted in maternal plasma and pup brains past the end of treatment (PD15). Male and female adolescent offspring were examined for changes to ventral tegmental area (VTA) dopamine neuron activity and cocaine-seeking behavior. Prenatal and early postnatal (GD1–PD10) cannabis-exposed male, but not female mice had decreased gamma-aminobutyric acid (GABAergic) input, depolarized resting membrane potential, and increased spontaneous firing of VTA dopamine neurons. Cannabis-exposed offspring showed faster decay of N-methyl-D-aspartate (NMDA) currents in both sexes. However, no differences in cocaine-seeking behavior were noted. These data characterize a voluntary prenatal cannabis exposure model and demonstrates VTA dopamine neuronal activity is disinhibited in offspring.
期刊介绍:
The Journal of Neuroscience Research (JNR) publishes novel research results that will advance our understanding of the development, function and pathophysiology of the nervous system, using molecular, cellular, systems, and translational approaches. JNR covers both basic research and clinical aspects of neurology, neuropathology, psychiatry or psychology.
The journal focuses on uncovering the intricacies of brain structure and function. Research published in JNR covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of the nervous system, with emphasis on how disease modifies the function and organization.