Richard Dagher, Burak Berksu Ozkara, Mert Karabacak, Samir A. Dagher, Elijah Isaac Rumbaut, Licia P. Luna, Vivek S. Yedavalli, Max Wintermark
{"title":"Artificial intelligence/machine learning for neuroimaging to predict hemorrhagic transformation: Systematic review/meta-analysis","authors":"Richard Dagher, Burak Berksu Ozkara, Mert Karabacak, Samir A. Dagher, Elijah Isaac Rumbaut, Licia P. Luna, Vivek S. Yedavalli, Max Wintermark","doi":"10.1111/jon.13223","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>Early and reliable prediction of hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) is crucial for treatment decisions and early intervention. The purpose of this study was to conduct a systematic review and meta-analysis on the performance of artificial intelligence (AI) and machine learning (ML) models that utilize neuroimaging to predict HT.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A systematic search of PubMed, EMBASE, and Web of Science was conducted until February 19, 2024. Inclusion criteria were as follows: patients with AIS who received reperfusion therapy; AI/ML algorithm using imaging to predict HT; or presence of sufficient data on the predictive performance. Exclusion criteria were as follows: articles with less than 20 patients; articles lacking algorithms that operate solely on images; or articles not detailing the algorithm used. The quality of eligible studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 and Checklist for Artificial Intelligence in Medical Imaging. Pooled sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated using a random-effects model, and a summary receiver operating characteristic curve was constructed using the Reitsma method.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We identified six eligible studies, which included 1640 patients. Aside from an unclear risk of bias regarding flow and timing identified in two of the studies, all studies showed low risk of bias and applicability concerns in all categories. Pooled sensitivity, specificity, and DOR were .849, .878, and 45.598, respectively.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>AI/ML models can reliably predict the occurrence of HT in AIS patients. More prospective studies are needed for subgroup analyses and higher clinical certainty and usefulness.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 5","pages":"505-514"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13223","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13223","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Purpose
Early and reliable prediction of hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) is crucial for treatment decisions and early intervention. The purpose of this study was to conduct a systematic review and meta-analysis on the performance of artificial intelligence (AI) and machine learning (ML) models that utilize neuroimaging to predict HT.
Methods
A systematic search of PubMed, EMBASE, and Web of Science was conducted until February 19, 2024. Inclusion criteria were as follows: patients with AIS who received reperfusion therapy; AI/ML algorithm using imaging to predict HT; or presence of sufficient data on the predictive performance. Exclusion criteria were as follows: articles with less than 20 patients; articles lacking algorithms that operate solely on images; or articles not detailing the algorithm used. The quality of eligible studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 and Checklist for Artificial Intelligence in Medical Imaging. Pooled sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated using a random-effects model, and a summary receiver operating characteristic curve was constructed using the Reitsma method.
Results
We identified six eligible studies, which included 1640 patients. Aside from an unclear risk of bias regarding flow and timing identified in two of the studies, all studies showed low risk of bias and applicability concerns in all categories. Pooled sensitivity, specificity, and DOR were .849, .878, and 45.598, respectively.
Conclusion
AI/ML models can reliably predict the occurrence of HT in AIS patients. More prospective studies are needed for subgroup analyses and higher clinical certainty and usefulness.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!