Mahdi Banaee , Amir Zeidi , Behzad Nematdoost Haghi , Amal Beitsayah
{"title":"The toxicity effects of imidacloprid and chlorpyrifos on oxidative stress and blood biochemistry in Cyprinus carpio","authors":"Mahdi Banaee , Amir Zeidi , Behzad Nematdoost Haghi , Amal Beitsayah","doi":"10.1016/j.cbpc.2024.109979","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to assess the toxicity effects of chlorpyrifos and imidacloprid, alone and in combination, on oxidative biomarkers and blood biochemistry of <em>Cyprinus carpio</em>. A total of 324 common carp (<em>Cyprinus carpio</em>) were distributed among 27 tanks and exposed to concentrations of 0.0, 100, and 200 μg L<sup>−1</sup> of chlorpyrifos and 0.0, 10.0, and 20.0 μg L<sup>−1</sup> of imidacloprid for 28 days. Changes in enzyme activities in the plasma of fish exposed to chlorpyrifos depended on the dose. In contrast, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatine phosphokinase (CPK), gamma-glutamyl transferase (GGT) activities were significantly increased in fish exposed to imidacloprid, alone and in combination with chlorpyrifos. However, the activity of butyrylcholinesterase (BChE) was significantly decreased. Exposure to imidacloprid and chlorpyrifos, alone and in combination, increased glucose, urea, cholesterol, triglycerides, and creatinine levels, whereas total protein and albumin levels were significantly decreased. The activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), and catalase (CAT) was significantly increased, while glutathione reductase (GR) was significantly decreased. Additionally, although the total antioxidant capacity (TAN) was significantly decreased, malondialdehyde (MDA) levels increased after exposure to imidacloprid and chlorpyrifos, alone and in combination. In conclusion, exposure to imidacloprid and chlorpyrifos, alone and in combination, induced oxidative stress and altered blood biochemistry in carp fish. Moreover, imidacloprid and chlorpyrifos had synergistic effects on some oxidative and biochemical biomarkers.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"284 ","pages":"Article 109979"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624001479","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to assess the toxicity effects of chlorpyrifos and imidacloprid, alone and in combination, on oxidative biomarkers and blood biochemistry of Cyprinus carpio. A total of 324 common carp (Cyprinus carpio) were distributed among 27 tanks and exposed to concentrations of 0.0, 100, and 200 μg L−1 of chlorpyrifos and 0.0, 10.0, and 20.0 μg L−1 of imidacloprid for 28 days. Changes in enzyme activities in the plasma of fish exposed to chlorpyrifos depended on the dose. In contrast, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatine phosphokinase (CPK), gamma-glutamyl transferase (GGT) activities were significantly increased in fish exposed to imidacloprid, alone and in combination with chlorpyrifos. However, the activity of butyrylcholinesterase (BChE) was significantly decreased. Exposure to imidacloprid and chlorpyrifos, alone and in combination, increased glucose, urea, cholesterol, triglycerides, and creatinine levels, whereas total protein and albumin levels were significantly decreased. The activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), and catalase (CAT) was significantly increased, while glutathione reductase (GR) was significantly decreased. Additionally, although the total antioxidant capacity (TAN) was significantly decreased, malondialdehyde (MDA) levels increased after exposure to imidacloprid and chlorpyrifos, alone and in combination. In conclusion, exposure to imidacloprid and chlorpyrifos, alone and in combination, induced oxidative stress and altered blood biochemistry in carp fish. Moreover, imidacloprid and chlorpyrifos had synergistic effects on some oxidative and biochemical biomarkers.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.