Early-life exposure to five biodegradable plastics impairs eye development and visually-mediated behavior through disturbing hypothalamus-pituitary-thyroid (HPT) axis in zebrafish larvae
IF 3.9 3区 环境科学与生态学Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Liang Wen , Xiaoting Man , Jialu Luan , Shuhui Zhang , Chengtian Zhao , Yehua Bao , Congzhi Liu , Xizeng Feng
{"title":"Early-life exposure to five biodegradable plastics impairs eye development and visually-mediated behavior through disturbing hypothalamus-pituitary-thyroid (HPT) axis in zebrafish larvae","authors":"Liang Wen , Xiaoting Man , Jialu Luan , Shuhui Zhang , Chengtian Zhao , Yehua Bao , Congzhi Liu , Xizeng Feng","doi":"10.1016/j.cbpc.2024.109981","DOIUrl":null,"url":null,"abstract":"<div><p>Biodegradable plastics have been commonly developed and applied as an alternative to traditional plastics, which cause environmental plastic pollution. However, biodegradable plastics still present limitations such as stringent degradation conditions and slow degradation rate, and may cause harm to the environment and organisms. Consequently, in this study, zebrafish was used to evaluate the effects of five biodegradable microplastics (MPs), polyglycolic acid (PGA), polylactic acid (PLA), polybutylene succinate (PBS), polyhydroxyalkanoate (PHA) and polybutylene adipate terephthalate (PBAT) exposure on the early development, retina morphology, visually-mediated behavior, and thyroid signaling at concentrations of 1 mg/L and 100 mg/L. The results indicated that all MPs induced decreased survival rate, reduced body length, smaller eyes, and smaller heads, affecting the early development of zebrafish larvae. Moreover, the thickness of retinal layers, including inner plexiform layer (IPL), outer nuclear layer (ONL), and retinal ganglion layer (RGL) was decreased, and the expression of key genes related to eye and retinal development was abnormally altered after all MPs exposure. Exposure to PBS and PBAT led to abnormal visually-mediated behavior, indicating likely affected the visual function. All MPs could also cause thyroid system disorders, among which alterations in the thyroid hormone receptors (TRs) genes could affect the retinal development of zebrafish larvae. In summary, biodegradable MPs exhibited eye developmental toxicity and likely impaired the visual function in zebrafish larvae. This provided new evidence for revealing the effects of biodegradable plastics on aquatic organism development and environmental risks to aquatic ecosystems.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"284 ","pages":"Article 109981"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624001492","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biodegradable plastics have been commonly developed and applied as an alternative to traditional plastics, which cause environmental plastic pollution. However, biodegradable plastics still present limitations such as stringent degradation conditions and slow degradation rate, and may cause harm to the environment and organisms. Consequently, in this study, zebrafish was used to evaluate the effects of five biodegradable microplastics (MPs), polyglycolic acid (PGA), polylactic acid (PLA), polybutylene succinate (PBS), polyhydroxyalkanoate (PHA) and polybutylene adipate terephthalate (PBAT) exposure on the early development, retina morphology, visually-mediated behavior, and thyroid signaling at concentrations of 1 mg/L and 100 mg/L. The results indicated that all MPs induced decreased survival rate, reduced body length, smaller eyes, and smaller heads, affecting the early development of zebrafish larvae. Moreover, the thickness of retinal layers, including inner plexiform layer (IPL), outer nuclear layer (ONL), and retinal ganglion layer (RGL) was decreased, and the expression of key genes related to eye and retinal development was abnormally altered after all MPs exposure. Exposure to PBS and PBAT led to abnormal visually-mediated behavior, indicating likely affected the visual function. All MPs could also cause thyroid system disorders, among which alterations in the thyroid hormone receptors (TRs) genes could affect the retinal development of zebrafish larvae. In summary, biodegradable MPs exhibited eye developmental toxicity and likely impaired the visual function in zebrafish larvae. This provided new evidence for revealing the effects of biodegradable plastics on aquatic organism development and environmental risks to aquatic ecosystems.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.