The effect of Dunaliella salina extracts on the adhesion of Pseudomonas aeruginosa to 3D printed polyethylene terephthalate and polylactic acid.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-09-01 Epub Date: 2024-07-22 DOI:10.1080/08927014.2024.2380404
Azzeddine Bechar, Sara Er-Rahmani, Mohammed Hassi, Moulay Sadiki, Soumya El Abed, Oumaima Ouaddi, Fatima Tizar, Mohamed Alouani, Saad Ibnsouda Koraichi
{"title":"The effect of <i>Dunaliella salina</i> extracts on the adhesion of <i>Pseudomonas aeruginosa</i> to 3D printed polyethylene terephthalate and polylactic acid.","authors":"Azzeddine Bechar, Sara Er-Rahmani, Mohammed Hassi, Moulay Sadiki, Soumya El Abed, Oumaima Ouaddi, Fatima Tizar, Mohamed Alouani, Saad Ibnsouda Koraichi","doi":"10.1080/08927014.2024.2380404","DOIUrl":null,"url":null,"abstract":"<p><p>Polyethylene terephthalate (PET) and polylactic acid (PLA) are among the polymers used in the food industry. In this study, crude extracts of <i>Dunaliella salina</i> were used to treat the surface of 3D printed materials studied, aiming to provide them with an anti-adhesive property against <i>Pseudomonas aeruginosa</i>. The hydrophobicity of treated and untreated surfaces was characterized using the contact angle method. Furthermore, the adhesive behavior of <i>P. aeruginosa</i> toward the substrata surfaces was also studied theoretically and experimentally. The results showed that the untreated PLA was hydrophobic, while the untreated PET was hydrophilic. It was also found that the treated materials became hydrophilic and electron-donating. The total energy of adhesion revealed that <i>P. aeruginosa</i> adhesion was theoretically favorable on untreated materials, while it was unfavorable on treated ones. Moreover, the experimental data proved that the adhesion to untreated substrata was obtained, while there was complete inhibition of adhesion to treated surfaces.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2380404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Polyethylene terephthalate (PET) and polylactic acid (PLA) are among the polymers used in the food industry. In this study, crude extracts of Dunaliella salina were used to treat the surface of 3D printed materials studied, aiming to provide them with an anti-adhesive property against Pseudomonas aeruginosa. The hydrophobicity of treated and untreated surfaces was characterized using the contact angle method. Furthermore, the adhesive behavior of P. aeruginosa toward the substrata surfaces was also studied theoretically and experimentally. The results showed that the untreated PLA was hydrophobic, while the untreated PET was hydrophilic. It was also found that the treated materials became hydrophilic and electron-donating. The total energy of adhesion revealed that P. aeruginosa adhesion was theoretically favorable on untreated materials, while it was unfavorable on treated ones. Moreover, the experimental data proved that the adhesion to untreated substrata was obtained, while there was complete inhibition of adhesion to treated surfaces.

杜纳利藻提取物对铜绿假单胞菌粘附在 3D 打印聚对苯二甲酸乙二醇酯和聚乳酸上的影响。
聚对苯二甲酸乙二醇酯(PET)和聚乳酸(PLA)是食品工业使用的聚合物之一。在这项研究中,使用了杜纳利藻的粗提取物来处理所研究的 3D 打印材料的表面,目的是使其具有抗铜绿假单胞菌的粘附性。使用接触角法对处理过和未处理过的表面的疏水性进行了表征。此外,还对铜绿假单胞菌对基材表面的粘附行为进行了理论和实验研究。结果表明,未经处理的聚乳酸具有疏水性,而未经处理的 PET 具有亲水性。研究还发现,经过处理的材料变得亲水且具有电子捐赠性。粘附总能量显示,理论上铜绿假单胞菌在未处理材料上的粘附是有利的,而在处理过的材料上则是不利的。此外,实验数据证明,铜绿微囊藻在未经处理的基质上获得了粘附力,而在经过处理的表面上则完全被抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信