{"title":"Application and performance enhancement of FAIMS spectral data for deep learning analysis using generative adversarial network reinforcement","authors":"Ruilong Zhang, Xiaoxia Du, Hua Li","doi":"10.1016/j.ab.2024.115627","DOIUrl":null,"url":null,"abstract":"<div><p>When using High-field asymmetric ion mobility spectrometry (FAIMS) to process complex mixtures for deep learning analysis, there is a problem of poor recognition performance due to the lack of high-quality data and low sample diversity. In this paper, a Generative Adversarial Network (GAN) method is introduced to simulate and generate highly realistic and diverse spectral for expanding the dataset using real mixture spectral data of 15 classes collected by FAIMS. The mixed datasets were put into VGG and ResNeXt for testing respectively, and the experimental results proved that the best recognition effect was achieved when the ratio of real data to generated data was 1:4: where accuracy improved by 24.19 % and 6.43 %; precision improved by 23.71 % and 6.97 %; recall improved by 21.08 % and 7.09 %; and F1-score improved by 24.50 % and 8.23 %. The above results strongly demonstrate that GAN can effectively expand the data volume and increase the sample diversity without increasing the additional experimental cost, which significantly enhances the experimental effect of FAIMS spectral for the analysis of complex mixtures.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"694 ","pages":"Article 115627"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724001714","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
When using High-field asymmetric ion mobility spectrometry (FAIMS) to process complex mixtures for deep learning analysis, there is a problem of poor recognition performance due to the lack of high-quality data and low sample diversity. In this paper, a Generative Adversarial Network (GAN) method is introduced to simulate and generate highly realistic and diverse spectral for expanding the dataset using real mixture spectral data of 15 classes collected by FAIMS. The mixed datasets were put into VGG and ResNeXt for testing respectively, and the experimental results proved that the best recognition effect was achieved when the ratio of real data to generated data was 1:4: where accuracy improved by 24.19 % and 6.43 %; precision improved by 23.71 % and 6.97 %; recall improved by 21.08 % and 7.09 %; and F1-score improved by 24.50 % and 8.23 %. The above results strongly demonstrate that GAN can effectively expand the data volume and increase the sample diversity without increasing the additional experimental cost, which significantly enhances the experimental effect of FAIMS spectral for the analysis of complex mixtures.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.