Dr. Derong Kong, Shen Zhang, Xinye Ma, Yuetong Yang, Changhao Dai, Prof. Li Geng, Prof. Yunqi Liu, Prof. Dacheng Wei
{"title":"DNA Logical Computing on a Transistor for Cancer Molecular Diagnosis","authors":"Dr. Derong Kong, Shen Zhang, Xinye Ma, Yuetong Yang, Changhao Dai, Prof. Li Geng, Prof. Yunqi Liu, Prof. Dacheng Wei","doi":"10.1002/anie.202407039","DOIUrl":null,"url":null,"abstract":"<p>Given the high degree of variability and complexity of cancer, precise monitoring and logical analysis of different nucleic acid markers are crucial for improving diagnostic precision and patient survival rates. However, existing molecular diagnostic methods normally suffer from high cost, cumbersome procedures, dependence on specialized equipment and the requirement of in-depth expertise in data analysis, failing to analyze multiple cancer-associated nucleic acid markers and provide immediate results in a point-of-care manner. Herein, we demonstrate a transistor-based DNA molecular computing (TDMC) platform that enables simultaneous detection and logical analysis of multiple microRNA (miRNA) markers on a single transistor. TDMC can perform not only basic logical operations such as “AND” and “OR”, but also complex cascading computing, opening up new dimensions for multi-index logical analysis. Owing to the high efficiency, sensing and computations of multi-analytes can be operated on a transistor at a concentration as low as 2×10<sup>−16</sup> M, reaching the lowest concentration for DNA molecular computing. Thus, TDMC achieves an accuracy of 98.4 % in the diagnosis of hepatocellular carcinoma from 62 serum samples. As a convenient and accurate platform, TDMC holds promise for applications in “one-stop” personalized medicine.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 41","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202407039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Given the high degree of variability and complexity of cancer, precise monitoring and logical analysis of different nucleic acid markers are crucial for improving diagnostic precision and patient survival rates. However, existing molecular diagnostic methods normally suffer from high cost, cumbersome procedures, dependence on specialized equipment and the requirement of in-depth expertise in data analysis, failing to analyze multiple cancer-associated nucleic acid markers and provide immediate results in a point-of-care manner. Herein, we demonstrate a transistor-based DNA molecular computing (TDMC) platform that enables simultaneous detection and logical analysis of multiple microRNA (miRNA) markers on a single transistor. TDMC can perform not only basic logical operations such as “AND” and “OR”, but also complex cascading computing, opening up new dimensions for multi-index logical analysis. Owing to the high efficiency, sensing and computations of multi-analytes can be operated on a transistor at a concentration as low as 2×10−16 M, reaching the lowest concentration for DNA molecular computing. Thus, TDMC achieves an accuracy of 98.4 % in the diagnosis of hepatocellular carcinoma from 62 serum samples. As a convenient and accurate platform, TDMC holds promise for applications in “one-stop” personalized medicine.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.