Half-Metallic Transport and Spin-Polarized Tunneling through the van der Waals Ferromagnet Fe4GeTe2.

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2024-07-31 Epub Date: 2024-07-22 DOI:10.1021/acs.nanolett.4c01479
Anita Halder, Declan Nell, Antik Sihi, Akash Bajaj, Stefano Sanvito, Andrea Droghetti
{"title":"Half-Metallic Transport and Spin-Polarized Tunneling through the van der Waals Ferromagnet Fe<sub>4</sub>GeTe<sub>2</sub>.","authors":"Anita Halder, Declan Nell, Antik Sihi, Akash Bajaj, Stefano Sanvito, Andrea Droghetti","doi":"10.1021/acs.nanolett.4c01479","DOIUrl":null,"url":null,"abstract":"<p><p>We examine the coherent spin-dependent transport properties of the van der Waals (vdW) ferromagnet Fe<sub>4</sub>GeTe<sub>2</sub> using density functional theory combined with the nonequilibrium Green's function method. Our findings reveal that the conductance perpendicular to the layers is half-metallic, meaning that it is almost entirely spin-polarized. This property persists from the bulk to a single layer, even under significant bias voltages and with spin-orbit coupling. Additionally, using dynamical mean field theory for quantum transport, we demonstrate that electron correlations are important for magnetic properties but minimally impact the conductance, preserving almost perfect spin-polarization. Motivated by these results, we then study the tunnel magnetoresistance (TMR) in a magnetic tunnel junction consisting of two Fe<sub>4</sub>GeTe<sub>2</sub> layers with the vdW gap acting as an insulating barrier. We predict a TMR ratio of ∼500%, which can be further enhanced by increasing the number of Fe<sub>4</sub>GeTe<sub>2</sub> layers in the junction.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"9221-9228"},"PeriodicalIF":9.1000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299226/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c01479","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We examine the coherent spin-dependent transport properties of the van der Waals (vdW) ferromagnet Fe4GeTe2 using density functional theory combined with the nonequilibrium Green's function method. Our findings reveal that the conductance perpendicular to the layers is half-metallic, meaning that it is almost entirely spin-polarized. This property persists from the bulk to a single layer, even under significant bias voltages and with spin-orbit coupling. Additionally, using dynamical mean field theory for quantum transport, we demonstrate that electron correlations are important for magnetic properties but minimally impact the conductance, preserving almost perfect spin-polarization. Motivated by these results, we then study the tunnel magnetoresistance (TMR) in a magnetic tunnel junction consisting of two Fe4GeTe2 layers with the vdW gap acting as an insulating barrier. We predict a TMR ratio of ∼500%, which can be further enhanced by increasing the number of Fe4GeTe2 layers in the junction.

Abstract Image

通过范德华铁磁体 Fe4GeTe2 的半金属输运和自旋极化隧道效应。
我们利用密度泛函理论结合非平衡格林函数方法,研究了范德华(vdW)铁磁体 Fe4GeTe2 的相干自旋输运特性。我们的研究结果表明,垂直于各层的电导是半金属性的,这意味着它几乎完全是自旋极化的。即使在很大的偏置电压和自旋轨道耦合的情况下,这一特性也会从体层持续到单层。此外,利用量子输运的动态均值场理论,我们证明了电子相关性对磁性非常重要,但对电导的影响却微乎其微,从而保持了几乎完美的自旋极化。受这些结果的启发,我们随后研究了由两个 Fe4GeTe2 层组成的磁性隧道结中的隧道磁阻(TMR),其中 vdW 间隙起着绝缘屏障的作用。我们预测隧道磁阻比为 500%,并可通过增加结中 Fe4GeTe2 层的数量进一步提高隧道磁阻比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信