Temperature-Inert Interface Enables Safe and Practical Energy-Dense LiNi0.91Co0.07Mn0.02O2 Pouch Cells

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Junxian Hou, Qinyu Shi, Xuning Feng, Junpei Terada, Li Wang, Liqi Zhao, Daihua Cao, Shigeaki Yamazaki, Chengshan Xu, Yue Qiu, Jing Feng, Toshiharu Shimooka, Yong Peng, Yingchen Xie, Gaolong Zhu, Languang Lu, Cheng Bao, Minggao Ouyang
{"title":"Temperature-Inert Interface Enables Safe and Practical Energy-Dense LiNi0.91Co0.07Mn0.02O2 Pouch Cells","authors":"Junxian Hou,&nbsp;Qinyu Shi,&nbsp;Xuning Feng,&nbsp;Junpei Terada,&nbsp;Li Wang,&nbsp;Liqi Zhao,&nbsp;Daihua Cao,&nbsp;Shigeaki Yamazaki,&nbsp;Chengshan Xu,&nbsp;Yue Qiu,&nbsp;Jing Feng,&nbsp;Toshiharu Shimooka,&nbsp;Yong Peng,&nbsp;Yingchen Xie,&nbsp;Gaolong Zhu,&nbsp;Languang Lu,&nbsp;Cheng Bao,&nbsp;Minggao Ouyang","doi":"10.1002/aenm.202402638","DOIUrl":null,"url":null,"abstract":"<p>Safety concerns significantly hinder the practical implementation of ultrahigh-nickel cathodes in lithium-ion batteries. The solid electrolyte interphase (SEI) derived from conventional ester-based electrolyte is susceptible to thermal decomposition, resulting in battery safety degradation. Herein, a temperature-inert and inorganic-rich SEI is developed for the ultrahigh-nickel LiNi<sub>0.91</sub>Co<sub>0.07</sub>Mn<sub>0.02</sub>O<sub>2</sub>|graphite (NCM91|Gr) battery by employing a flame-retardant diluted weakly solvated electrolyte. Temperature-dependent X-ray photoelectron spectroscopy reveals that SEI's inorganic components of LiF, Li<sub>2</sub>SO<sub>3</sub>, Li<sub>2</sub>SO<sub>4</sub>, and Li<sub>3</sub>N exhibit exceptional thermotolerance under thermal attack. Further evidence from temperature-dependent X-ray diffraction indicates that this thermally stable interface effectively mitigates the anode phase transition from the original LiC<sub>6</sub> to LiC<sub>12</sub> state, resulting in a remarkable improvement in intrinsic safety and a 32% reduction in gas emission for battery. The 1.2 Ah NCM91|Gr pouch cell exhibits a thermal failure onset temperature as high as 183.1 °C and maintains stability at 180 °C for 60 min. Furthermore, a 360 Wh kg<sup>−1</sup> 12.3 Ah LiNi<sub>0.92</sub>Co<sub>0.06</sub>Mn<sub>0.02</sub>O<sub>2</sub>|graphite@20% silicon dioxide cell experiences no thermal runaway even at 200 °C. The 1.2 Ah NCM91|Gr pouch cell also delivers outstanding capacity retention of 90.5% after 1200 cycles with enhanced electrochemical performance. This study provides a promising approach for developing safer energy-dense batteries through electrolyte and interface design.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202402638","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Safety concerns significantly hinder the practical implementation of ultrahigh-nickel cathodes in lithium-ion batteries. The solid electrolyte interphase (SEI) derived from conventional ester-based electrolyte is susceptible to thermal decomposition, resulting in battery safety degradation. Herein, a temperature-inert and inorganic-rich SEI is developed for the ultrahigh-nickel LiNi0.91Co0.07Mn0.02O2|graphite (NCM91|Gr) battery by employing a flame-retardant diluted weakly solvated electrolyte. Temperature-dependent X-ray photoelectron spectroscopy reveals that SEI's inorganic components of LiF, Li2SO3, Li2SO4, and Li3N exhibit exceptional thermotolerance under thermal attack. Further evidence from temperature-dependent X-ray diffraction indicates that this thermally stable interface effectively mitigates the anode phase transition from the original LiC6 to LiC12 state, resulting in a remarkable improvement in intrinsic safety and a 32% reduction in gas emission for battery. The 1.2 Ah NCM91|Gr pouch cell exhibits a thermal failure onset temperature as high as 183.1 °C and maintains stability at 180 °C for 60 min. Furthermore, a 360 Wh kg−1 12.3 Ah LiNi0.92Co0.06Mn0.02O2|graphite@20% silicon dioxide cell experiences no thermal runaway even at 200 °C. The 1.2 Ah NCM91|Gr pouch cell also delivers outstanding capacity retention of 90.5% after 1200 cycles with enhanced electrochemical performance. This study provides a promising approach for developing safer energy-dense batteries through electrolyte and interface design.

Abstract Image

温度惰性接口实现了安全实用的高能量锂离子 0.91Co0.07Mn0.02O2 袋式电池
安全问题严重阻碍了超高镍阴极在锂离子电池中的实际应用。从传统的酯类电解质中提取的固体电解质中间相(SEI)容易发生热分解,导致电池安全性下降。在此,通过采用阻燃稀释弱溶解电解质,为超高镍锂镍0.91钴0.07锰0.02O2|石墨(NCM91|Gr)电池开发了一种温度惰性和富含无机物的 SEI。与温度相关的 X 射线光电子能谱显示,SEI 的无机成分 LiF、Li2SO3、Li2SO4 和 Li3N 在热侵蚀下表现出卓越的耐热性。温度相关 X 射线衍射的进一步证据表明,这种热稳定界面有效地缓解了阳极从原始 LiC6 到 LiC12 状态的相变,从而显著提高了电池的内在安全性,并将气体排放减少了 32%。1.2 Ah NCM91|Gr 袋装电池的热失效起始温度高达 183.1 °C,并能在 180 °C 下保持稳定 60 分钟。此外,360 Wh kg-1 12.3 Ah LiNi0.92Co0.06Mn0.02O2|石墨@20%二氧化硅电池即使在 200 °C 下也不会出现热失控。1.2 Ah NCM91|Gr 袋装电池在 1200 次循环后的容量保持率也高达 90.5%,电化学性能得到了增强。这项研究为通过电解质和界面设计开发更安全的高能量电池提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信