{"title":"Unveiling the dynamics of AI applications: A review of reviews using scientometrics and BERTopic modeling","authors":"Raghu Raman , Debidutta Pattnaik , Laurie Hughes , Prema Nedungadi","doi":"10.1016/j.jik.2024.100517","DOIUrl":null,"url":null,"abstract":"<div><p>In a world that has rapidly transformed through the advent of artificial intelligence (AI), our systematic review, guided by the PRISMA protocol, investigates a decade of AI research, revealing insights into its evolution and impact. Our study, examining 3,767 articles, has drawn considerable attention, as evidenced by an impressive 63,577 citations, underscoring the scholarly community's profound engagement. Our study reveals a collaborative landscape with 18,189 contributing authors, reflecting a robust network of researchers advancing AI and machine learning applications. Review categories focus on systematic reviews and bibliometric analyses, indicating an increasing emphasis on comprehensive literature synthesis and quantitative analysis. The findings also suggest an opportunity to explore emerging methodologies such as topic modeling and meta-analysis. We dissect the state of the art presented in these reviews, finding themes throughout the broad scholarly discourse through thematic clustering and BERTopic modeling. Categorization of study articles across fields of research indicates dominance in <em>Information and Computing Sciences</em>, followed by <em>Biomedical and Clinical Sciences</em>. Subject categories reveal interconnected clusters across various sectors, notably in healthcare, engineering, business intelligence, and computational technologies. Semantic analysis via BERTopic revealed nineteen clusters mapped to themes such as <em>AI in health innovations, AI for sustainable development, AI and deep learning, AI in education,</em> and <em>ethical considerations</em>. Future research directions are suggested, emphasizing the need for intersectional bias mitigation, holistic health approaches, AI's role in environmental sustainability, and the ethical deployment of generative AI.</p></div>","PeriodicalId":46792,"journal":{"name":"Journal of Innovation & Knowledge","volume":null,"pages":null},"PeriodicalIF":15.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2444569X24000568/pdfft?md5=63ad1459312d93e8979da1b39a7713eb&pid=1-s2.0-S2444569X24000568-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovation & Knowledge","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2444569X24000568","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
In a world that has rapidly transformed through the advent of artificial intelligence (AI), our systematic review, guided by the PRISMA protocol, investigates a decade of AI research, revealing insights into its evolution and impact. Our study, examining 3,767 articles, has drawn considerable attention, as evidenced by an impressive 63,577 citations, underscoring the scholarly community's profound engagement. Our study reveals a collaborative landscape with 18,189 contributing authors, reflecting a robust network of researchers advancing AI and machine learning applications. Review categories focus on systematic reviews and bibliometric analyses, indicating an increasing emphasis on comprehensive literature synthesis and quantitative analysis. The findings also suggest an opportunity to explore emerging methodologies such as topic modeling and meta-analysis. We dissect the state of the art presented in these reviews, finding themes throughout the broad scholarly discourse through thematic clustering and BERTopic modeling. Categorization of study articles across fields of research indicates dominance in Information and Computing Sciences, followed by Biomedical and Clinical Sciences. Subject categories reveal interconnected clusters across various sectors, notably in healthcare, engineering, business intelligence, and computational technologies. Semantic analysis via BERTopic revealed nineteen clusters mapped to themes such as AI in health innovations, AI for sustainable development, AI and deep learning, AI in education, and ethical considerations. Future research directions are suggested, emphasizing the need for intersectional bias mitigation, holistic health approaches, AI's role in environmental sustainability, and the ethical deployment of generative AI.
期刊介绍:
The Journal of Innovation and Knowledge (JIK) explores how innovation drives knowledge creation and vice versa, emphasizing that not all innovation leads to knowledge, but enduring innovation across diverse fields fosters theory and knowledge. JIK invites papers on innovations enhancing or generating knowledge, covering innovation processes, structures, outcomes, and behaviors at various levels. Articles in JIK examine knowledge-related changes promoting innovation for societal best practices.
JIK serves as a platform for high-quality studies undergoing double-blind peer review, ensuring global dissemination to scholars, practitioners, and policymakers who recognize innovation and knowledge as economic drivers. It publishes theoretical articles, empirical studies, case studies, reviews, and other content, addressing current trends and emerging topics in innovation and knowledge. The journal welcomes suggestions for special issues and encourages articles to showcase contextual differences and lessons for a broad audience.
In essence, JIK is an interdisciplinary journal dedicated to advancing theoretical and practical innovations and knowledge across multiple fields, including Economics, Business and Management, Engineering, Science, and Education.