{"title":"Unified multifunctional-reconfigurable architecture for device-circuit co-design","authors":"Gagan, Akansha Aggarwal","doi":"10.1016/j.mejo.2024.106329","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we propose a novel unified device-circuit co-design for functional scalability and diversifiability within the same footprint. The proposed design comprises two L-shaped NMOS monolithically integrated with two L-shaped PMOS utilizing common silicon reservoir with charge-plasma (CP) induced source and drain regions. The CP regions are induced by choosing appropriate work functions for the metal electrodes using calibrated TCAD simulations. Through source-drain interchangeability among individual transistors and appropriate signal bias, we have demonstrated the possible reconfigurations of the proposed single architecture to perform various device and/or circuit level operations concurrently/separately. For device level analyses, we realized concurrent NMOS and PMOS in single-channel and/or dual-channel configurations. Further, for circuit level analyses, we realized a CMOS inverter in addition to an NMOS and a PMOS, all three operating independently. Next, we demonstrated two independent inverters with possible realization of a buffer. Lastly, we present NAND and NOR Gates, each in two possible configurations, obtained through the proposed single-device architecture.</p></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187923912400033X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we propose a novel unified device-circuit co-design for functional scalability and diversifiability within the same footprint. The proposed design comprises two L-shaped NMOS monolithically integrated with two L-shaped PMOS utilizing common silicon reservoir with charge-plasma (CP) induced source and drain regions. The CP regions are induced by choosing appropriate work functions for the metal electrodes using calibrated TCAD simulations. Through source-drain interchangeability among individual transistors and appropriate signal bias, we have demonstrated the possible reconfigurations of the proposed single architecture to perform various device and/or circuit level operations concurrently/separately. For device level analyses, we realized concurrent NMOS and PMOS in single-channel and/or dual-channel configurations. Further, for circuit level analyses, we realized a CMOS inverter in addition to an NMOS and a PMOS, all three operating independently. Next, we demonstrated two independent inverters with possible realization of a buffer. Lastly, we present NAND and NOR Gates, each in two possible configurations, obtained through the proposed single-device architecture.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.