Investigation on the cavitation characteristic of a novel cylindrical rotational hydrodynamic cavitation reactor

IF 8.7 1区 化学 Q1 ACOUSTICS
{"title":"Investigation on the cavitation characteristic of a novel cylindrical rotational hydrodynamic cavitation reactor","authors":"","doi":"10.1016/j.ultsonch.2024.106999","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrodynamic cavitation reactors are of great promise for the applications of chemical process intensification and water treatment. In this work, a novel cylindrical rotational hydrodynamic cavitation reactor (CRHCR) with rectangular grooves and oblique tooth protrusions on the rotor surface was studied. The three-dimensional characterization of cavitation within the CRHCR was observed from the front and left views by the high-speed camera experiments. Interestingly, a new phenomenon of simultaneous formation of the attached cavitation and shear cavitation was found in the CRHCR. The synergistic effect of attached cavitation and shear cavitation contributes to the enhancement of the cavitation performance of CRHCR. In addition, the evolution of attached cavitation is explored. It is found that attached cavitation forms a trapezoidal-shaped cavitation cloud in the groove, which undergoes three various stages: incipient, development, and collapse. Finally, the pulsation frequency and cavitation intensity of shear cavitation in the chamber were investigated. The results show that the cavitation pulsation frequency is the same at the same rotational speed in the chamber near diverse oblique teeth. As the rotational speed increases, the cavitation pulsation frequency increases linearly. These findings in this paper are of great benefit to understanding the mechanism of the cavitation effect of CRHCR.</p></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350417724002475/pdfft?md5=4ff22051482c4f9e17a1f555658a2305&pid=1-s2.0-S1350417724002475-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724002475","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrodynamic cavitation reactors are of great promise for the applications of chemical process intensification and water treatment. In this work, a novel cylindrical rotational hydrodynamic cavitation reactor (CRHCR) with rectangular grooves and oblique tooth protrusions on the rotor surface was studied. The three-dimensional characterization of cavitation within the CRHCR was observed from the front and left views by the high-speed camera experiments. Interestingly, a new phenomenon of simultaneous formation of the attached cavitation and shear cavitation was found in the CRHCR. The synergistic effect of attached cavitation and shear cavitation contributes to the enhancement of the cavitation performance of CRHCR. In addition, the evolution of attached cavitation is explored. It is found that attached cavitation forms a trapezoidal-shaped cavitation cloud in the groove, which undergoes three various stages: incipient, development, and collapse. Finally, the pulsation frequency and cavitation intensity of shear cavitation in the chamber were investigated. The results show that the cavitation pulsation frequency is the same at the same rotational speed in the chamber near diverse oblique teeth. As the rotational speed increases, the cavitation pulsation frequency increases linearly. These findings in this paper are of great benefit to understanding the mechanism of the cavitation effect of CRHCR.

新型圆柱形旋转流体动力空化反应器的空化特性研究
水动力空化反应器在化学过程强化和水处理方面的应用前景十分广阔。本文研究了一种新型圆柱形旋转流体动力空化反应器(CRHCR),其转子表面带有矩形凹槽和斜齿突起。通过高速摄像实验,从正视图和左视图观察了 CRHCR 内部空化的三维特征。有趣的是,在 CRHCR 中发现了附着空化和剪切空化同时形成的新现象。附着空化和剪切空化的协同效应有助于提高 CRHCR 的空化性能。此外,还探讨了附着空化的演变过程。研究发现,附着空化在凹槽中形成梯形空化云,并经历了萌芽、发展和崩溃三个不同阶段。最后,研究了腔体内剪切空化的脉动频率和空化强度。结果表明,在相同转速下,不同斜齿附近腔体内的空化脉动频率相同。随着转速的增加,空化脉动频率呈线性增加。本文的这些发现对理解 CRHCR 的空化效应机理大有裨益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信