Evaluation of artificial intelligence-assisted morphological analysis for platelet count estimation.

International journal of laboratory hematology Pub Date : 2024-12-01 Epub Date: 2024-07-20 DOI:10.1111/ijlh.14345
Ping Guo, Chi Zhang, Dandan Liu, Ziyong Sun, Jun He, Jianbiao Wang
{"title":"Evaluation of artificial intelligence-assisted morphological analysis for platelet count estimation.","authors":"Ping Guo, Chi Zhang, Dandan Liu, Ziyong Sun, Jun He, Jianbiao Wang","doi":"10.1111/ijlh.14345","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study aims to assess the performance of the platelet count estimation using artificial intelligence technology on the MC-80 digital morphology analyzer.</p><p><strong>Methods: </strong>Digital morphology analyzer uses two different computational principles for platelet count estimation: based on PLT/RBC ratio (PLT-M1) and estimate factor (PLT-M2). 977 samples with various platelet counts (low, median, and high) were collected. Out of these, 271 samples were immunoassayed using CD61 and CD41 antibodies. The platelet counts obtained from the hematology analyzer (PLT-I and PLT-O), digital morphology analyzer (PLT-M1 and PLT-M2), and flow cytometry (PLT-IRM) were compared.</p><p><strong>Results: </strong>There was no significant deviation observed before and after verification for both PLT-M1 and PLT-M2 across the analysis range (average bias: -0.845/-0.682, 95% limit of agreement (LOA): -28.675-26.985/-29.420-28.056). When platelet alarms appeared, PLT-M1/PLT-M2 showed the strongest correlation with PLT-IRM than PLT-I with PLT-IRM (r: 0.9814/0.9796 > 0.9601). The correlation between PLT-M1/PLT-M2 and PLT-IRM was strong for samples with interference, such as large platelets or RBC fragments, but relatively weak in small RBCs. The deviation between PLT-M1 and PLT-M2 is related to the number of RBCs. Compared with PLT-I, PLT-M1/PLT-M2 showed higher accuracy for platelet transfusion decisions, especially for samples with low-value PLT.</p><p><strong>Conclusion: </strong>The novel platelet count estimation on the MC-80 digital morphology analyzer provides high accuracy, especially the reviewed result, which can effectively confirm suspicious platelet count.</p>","PeriodicalId":94050,"journal":{"name":"International journal of laboratory hematology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of laboratory hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/ijlh.14345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: This study aims to assess the performance of the platelet count estimation using artificial intelligence technology on the MC-80 digital morphology analyzer.

Methods: Digital morphology analyzer uses two different computational principles for platelet count estimation: based on PLT/RBC ratio (PLT-M1) and estimate factor (PLT-M2). 977 samples with various platelet counts (low, median, and high) were collected. Out of these, 271 samples were immunoassayed using CD61 and CD41 antibodies. The platelet counts obtained from the hematology analyzer (PLT-I and PLT-O), digital morphology analyzer (PLT-M1 and PLT-M2), and flow cytometry (PLT-IRM) were compared.

Results: There was no significant deviation observed before and after verification for both PLT-M1 and PLT-M2 across the analysis range (average bias: -0.845/-0.682, 95% limit of agreement (LOA): -28.675-26.985/-29.420-28.056). When platelet alarms appeared, PLT-M1/PLT-M2 showed the strongest correlation with PLT-IRM than PLT-I with PLT-IRM (r: 0.9814/0.9796 > 0.9601). The correlation between PLT-M1/PLT-M2 and PLT-IRM was strong for samples with interference, such as large platelets or RBC fragments, but relatively weak in small RBCs. The deviation between PLT-M1 and PLT-M2 is related to the number of RBCs. Compared with PLT-I, PLT-M1/PLT-M2 showed higher accuracy for platelet transfusion decisions, especially for samples with low-value PLT.

Conclusion: The novel platelet count estimation on the MC-80 digital morphology analyzer provides high accuracy, especially the reviewed result, which can effectively confirm suspicious platelet count.

评估人工智能辅助形态分析在血小板计数估算中的应用。
导言本研究旨在评估 MC-80 数字形态分析仪使用人工智能技术估算血小板计数的性能:数字形态分析仪使用两种不同的计算原理估算血小板计数:基于 PLT/RBC 比率(PLT-M1)和估算因子(PLT-M2)。收集了 977 份不同血小板计数(低、中、高)的样本。其中 271 份样本使用 CD61 和 CD41 抗体进行了免疫测定。对血液分析仪(PLT-I 和 PLT-O)、数字形态分析仪(PLT-M1 和 PLT-M2)和流式细胞仪(PLT-IRM)得出的血小板计数进行了比较:在整个分析范围内,PLT-M1 和 PLT-M2 在验证前后均未观察到明显偏差(平均偏差:-0.845/-0.682,95% 一致度(LOA):-28.675-26.985/-29.420-28.056)。当血小板警报出现时,PLT-M1/PLT-M2 与 PLT-IRM 的相关性比 PLT-I 与 PLT-IRM 的相关性强(r:0.9814/0.9796 > 0.9601)。对于大血小板或红细胞碎片等干扰样本,PLT-M1/PLT-M2 与 PLT-IRM 的相关性很强,但对于小红细胞,相关性相对较弱。PLT-M1 和 PLT-M2 之间的偏差与红细胞数量有关。与 PLT-I 相比,PLT-M1/PLT-M2 对血小板输注决策的准确性更高,尤其是对低值 PLT 样本:结论:在 MC-80 数字形态分析仪上进行的新型血小板计数估算具有很高的准确性,尤其是复核结果,可有效确认可疑血小板计数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信