Ping Guo, Chi Zhang, Dandan Liu, Ziyong Sun, Jun He, Jianbiao Wang
{"title":"Evaluation of artificial intelligence-assisted morphological analysis for platelet count estimation","authors":"Ping Guo, Chi Zhang, Dandan Liu, Ziyong Sun, Jun He, Jianbiao Wang","doi":"10.1111/ijlh.14345","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Introduction</h3>\n \n <p>This study aims to assess the performance of the platelet count estimation using artificial intelligence technology on the MC-80 digital morphology analyzer.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Digital morphology analyzer uses two different computational principles for platelet count estimation: based on PLT/RBC ratio (PLT-M1) and estimate factor (PLT-M2). 977 samples with various platelet counts (low, median, and high) were collected. Out of these, 271 samples were immunoassayed using CD61 and CD41 antibodies. The platelet counts obtained from the hematology analyzer (PLT-I and PLT-O), digital morphology analyzer (PLT-M1 and PLT-M2), and flow cytometry (PLT-IRM) were compared.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>There was no significant deviation observed before and after verification for both PLT-M1 and PLT-M2 across the analysis range (average bias: −0.845/−0.682, 95% limit of agreement (LOA): −28.675–26.985/−29.420–28.056). When platelet alarms appeared, PLT-M1/PLT-M2 showed the strongest correlation with PLT-IRM than PLT-I with PLT-IRM (<i>r</i>: 0.9814/0.9796 > 0.9601). The correlation between PLT-M1/PLT-M2 and PLT-IRM was strong for samples with interference, such as large platelets or RBC fragments, but relatively weak in small RBCs. The deviation between PLT-M1 and PLT-M2 is related to the number of RBCs. Compared with PLT-I, PLT-M1/PLT-M2 showed higher accuracy for platelet transfusion decisions, especially for samples with low-value PLT.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The novel platelet count estimation on the MC-80 digital morphology analyzer provides high accuracy, especially the reviewed result, which can effectively confirm suspicious platelet count.</p>\n </section>\n </div>","PeriodicalId":14120,"journal":{"name":"International Journal of Laboratory Hematology","volume":"46 6","pages":"1012-1020"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Laboratory Hematology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijlh.14345","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
This study aims to assess the performance of the platelet count estimation using artificial intelligence technology on the MC-80 digital morphology analyzer.
Methods
Digital morphology analyzer uses two different computational principles for platelet count estimation: based on PLT/RBC ratio (PLT-M1) and estimate factor (PLT-M2). 977 samples with various platelet counts (low, median, and high) were collected. Out of these, 271 samples were immunoassayed using CD61 and CD41 antibodies. The platelet counts obtained from the hematology analyzer (PLT-I and PLT-O), digital morphology analyzer (PLT-M1 and PLT-M2), and flow cytometry (PLT-IRM) were compared.
Results
There was no significant deviation observed before and after verification for both PLT-M1 and PLT-M2 across the analysis range (average bias: −0.845/−0.682, 95% limit of agreement (LOA): −28.675–26.985/−29.420–28.056). When platelet alarms appeared, PLT-M1/PLT-M2 showed the strongest correlation with PLT-IRM than PLT-I with PLT-IRM (r: 0.9814/0.9796 > 0.9601). The correlation between PLT-M1/PLT-M2 and PLT-IRM was strong for samples with interference, such as large platelets or RBC fragments, but relatively weak in small RBCs. The deviation between PLT-M1 and PLT-M2 is related to the number of RBCs. Compared with PLT-I, PLT-M1/PLT-M2 showed higher accuracy for platelet transfusion decisions, especially for samples with low-value PLT.
Conclusion
The novel platelet count estimation on the MC-80 digital morphology analyzer provides high accuracy, especially the reviewed result, which can effectively confirm suspicious platelet count.
期刊介绍:
The International Journal of Laboratory Hematology provides a forum for the communication of new developments, research topics and the practice of laboratory haematology.
The journal publishes invited reviews, full length original articles, and correspondence.
The International Journal of Laboratory Hematology is the official journal of the International Society for Laboratory Hematology, which addresses the following sub-disciplines: cellular analysis, flow cytometry, haemostasis and thrombosis, molecular diagnostics, haematology informatics, haemoglobinopathies, point of care testing, standards and guidelines.
The journal was launched in 2006 as the successor to Clinical and Laboratory Hematology, which was first published in 1979. An active and positive editorial policy ensures that work of a high scientific standard is reported, in order to bridge the gap between practical and academic aspects of laboratory haematology.