An experimental study on the curing of desert sand using bio-cement.

IF 4.3 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiao Fu, Wan-Jun Ye
{"title":"An experimental study on the curing of desert sand using bio-cement.","authors":"Xiao Fu, Wan-Jun Ye","doi":"10.1186/s40643-024-00788-y","DOIUrl":null,"url":null,"abstract":"<p><p>In order to promote the development and utilization of desert sand, this study is based on researching the most suitable ratio of bio-cement, analyzing the shear strength and permeability of improved desert sand by combining bio-cement and fly ash, and clarifying the applicability of tap water in bio-cement. The relationship between the two and the microstructural properties was investigated using the results of the straight shear test and the permeability test. The results showed that the urease solution prepared with tap water had a more pronounced temperature resistance. The urea concentration and the corresponding pH environment had a direct effect on the urease activity. The calcium carbonate yield was positively correlated with the calcium concentration, and the urea concentration was higher in the ranges of 1.0-1.5 mol/L. As the enzyme-to-gel ratio decreased, the calcium carbonate precipitate produced per unit volume of urease solution gradually converged to a certain value. The shear strength (increased by 37.9%) and permeability (decreased by about 8.9-68.5%) of the modified desert sand peaked with the increase in fly ash content. The microscopic test results indicated that the fly ash could provide nucleation sites for the bio-cement, effectively improving the mechanical properties of the desert sand. The crystal types of calcium carbonate in the modified desert sand were calcite and aragonite, which were the most stable crystal types. This study provides innovative ideas for interdisciplinary research in the fields of bioengineering, ecology and civil engineering.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"11 1","pages":"72"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264504/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-024-00788-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to promote the development and utilization of desert sand, this study is based on researching the most suitable ratio of bio-cement, analyzing the shear strength and permeability of improved desert sand by combining bio-cement and fly ash, and clarifying the applicability of tap water in bio-cement. The relationship between the two and the microstructural properties was investigated using the results of the straight shear test and the permeability test. The results showed that the urease solution prepared with tap water had a more pronounced temperature resistance. The urea concentration and the corresponding pH environment had a direct effect on the urease activity. The calcium carbonate yield was positively correlated with the calcium concentration, and the urea concentration was higher in the ranges of 1.0-1.5 mol/L. As the enzyme-to-gel ratio decreased, the calcium carbonate precipitate produced per unit volume of urease solution gradually converged to a certain value. The shear strength (increased by 37.9%) and permeability (decreased by about 8.9-68.5%) of the modified desert sand peaked with the increase in fly ash content. The microscopic test results indicated that the fly ash could provide nucleation sites for the bio-cement, effectively improving the mechanical properties of the desert sand. The crystal types of calcium carbonate in the modified desert sand were calcite and aragonite, which were the most stable crystal types. This study provides innovative ideas for interdisciplinary research in the fields of bioengineering, ecology and civil engineering.

Abstract Image

使用生物水泥固化沙漠沙的实验研究。
为了促进荒漠砂的开发和利用,本研究立足于研究生物水泥的最合适配比,分析生物水泥与粉煤灰结合改良荒漠砂的剪切强度和渗透性,并明确自来水在生物水泥中的适用性。利用直剪试验和渗透性试验的结果研究了两者与微观结构特性之间的关系。结果表明,用自来水制备的尿素酶溶液具有更明显的耐温性。尿素浓度和相应的 pH 环境对脲酶活性有直接影响。碳酸钙产量与钙浓度呈正相关,尿素浓度在 1.0-1.5 mol/L 范围内较高。随着酶凝胶比的降低,单位体积脲酶溶液产生的碳酸钙沉淀逐渐趋于某一数值。随着粉煤灰含量的增加,改性沙漠砂的剪切强度(增加 37.9%)和渗透性(降低约 8.9%-68.5%)达到峰值。微观测试结果表明,粉煤灰可为生物水泥提供成核位点,有效改善沙漠砂的力学性能。改性沙漠砂中碳酸钙的晶体类型为方解石和文石,是最稳定的晶体类型。这项研究为生物工程、生态学和土木工程领域的跨学科研究提供了创新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresources and Bioprocessing
Bioresources and Bioprocessing BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
8.70%
发文量
118
审稿时长
13 weeks
期刊介绍: Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信