High-yield magnetosome production of Magnetospirillum magneticum strain AMB-1 in flask fermentation through simplified processing and optimized iron supplementation.
IF 2 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"High-yield magnetosome production of Magnetospirillum magneticum strain AMB-1 in flask fermentation through simplified processing and optimized iron supplementation.","authors":"Yu Wang, Zhengyi Liu, Wenjun Li, Hongli Cui, Yandi Huang, Song Qin","doi":"10.1007/s10529-024-03507-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Developing a simplified flask fermentation strategy utilizing magnetotactic bacterium AMB-1 and optimized iron supplementation for high-yield magnetosome production to address the challenges associated with magnetosome acquisition.</p><p><strong>Results: </strong>A reliable processing for the pure culture of AMB-1 was established using standard laboratory consumables and equipment. Subsequently, the medium and iron supplementation were optimized to enhance the yield of AMB-1 magnetosomes. The mSLM supported higher biomass accumulation in flask fermentation, reaching an OD<sub>565</sub> of ~ 0.7. The premixed solution of ferric quinate and EDTA-Fe (at a ratio of 0.5:0.5 and a concentration of 0.4 mmol/L) stabilized Fe<sup>3+</sup> and significantly increased the reductase activity of AMB-1. Flask fermentations with an initial volume of 15 L were then conducted employing the optimized fermentation strategy. After two rounds of iron and nutrient supplementation, the magnetosome yield reached 185.7 ± 9.5 mg/batch (approximately 12 mg/L), representing the highest AMB-1 flask fermentation yield to our knowledge.</p><p><strong>Conclusion: </strong>A flask fermentation strategy for high-yield magnetsome production was developed, eliminating the need for bioreactors and greatly simplifying the process of magnetosome acquisition.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03507-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Developing a simplified flask fermentation strategy utilizing magnetotactic bacterium AMB-1 and optimized iron supplementation for high-yield magnetosome production to address the challenges associated with magnetosome acquisition.
Results: A reliable processing for the pure culture of AMB-1 was established using standard laboratory consumables and equipment. Subsequently, the medium and iron supplementation were optimized to enhance the yield of AMB-1 magnetosomes. The mSLM supported higher biomass accumulation in flask fermentation, reaching an OD565 of ~ 0.7. The premixed solution of ferric quinate and EDTA-Fe (at a ratio of 0.5:0.5 and a concentration of 0.4 mmol/L) stabilized Fe3+ and significantly increased the reductase activity of AMB-1. Flask fermentations with an initial volume of 15 L were then conducted employing the optimized fermentation strategy. After two rounds of iron and nutrient supplementation, the magnetosome yield reached 185.7 ± 9.5 mg/batch (approximately 12 mg/L), representing the highest AMB-1 flask fermentation yield to our knowledge.
Conclusion: A flask fermentation strategy for high-yield magnetsome production was developed, eliminating the need for bioreactors and greatly simplifying the process of magnetosome acquisition.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.