Super-Stable Mineralization of Metal Ions from Smelting Wastewater by In Situ Synthesis of NiFe-Based Layered Double Hydroxides for Catalytic Phenol Hydroxylation.
Yanling Wang, Yanqi Xu, Cunjun Li, Hai Wang, Linjiang Wang
{"title":"Super-Stable Mineralization of Metal Ions from Smelting Wastewater by In Situ Synthesis of NiFe-Based Layered Double Hydroxides for Catalytic Phenol Hydroxylation.","authors":"Yanling Wang, Yanqi Xu, Cunjun Li, Hai Wang, Linjiang Wang","doi":"10.1002/smtd.202400688","DOIUrl":null,"url":null,"abstract":"<p><p>The super-stable mineralization of metal ions from industrial wastewater by in situ synthesis of layered double hydroxides (LDHs) has been regarded as a sustainable approach from environmental protection and resource utilization perspectives. Herein, the study reports a super-stable mineralization of metal ions including Ni, Fe, Cr, Mn, Cu, Ca, Al, etc. from smelting wastewater by in situ synthesis of NiFe-based LDHs through facile coprecipitation. Such approach exhibits superior mineralization efficiency of metal ions simultaneously that can remove hundreds, thousands, or even tens of thousands mg/L of multiple metal ions to below the values of the Chinese National Emission Standards of Pollutants. Furthermore, the obtained NiFe-based LDHs exhibit excellent catalytic performance of phenol hydroxylation due to the mineralization of multiple metals on the laminates, where 48.24% conversion of phenol and 71.58% selectivity of dihydroxybenzenes are realized under room temperature for 3 h. This work paves a sustainable strategy for hazardous material disposal and resource utilization.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400688"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400688","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The super-stable mineralization of metal ions from industrial wastewater by in situ synthesis of layered double hydroxides (LDHs) has been regarded as a sustainable approach from environmental protection and resource utilization perspectives. Herein, the study reports a super-stable mineralization of metal ions including Ni, Fe, Cr, Mn, Cu, Ca, Al, etc. from smelting wastewater by in situ synthesis of NiFe-based LDHs through facile coprecipitation. Such approach exhibits superior mineralization efficiency of metal ions simultaneously that can remove hundreds, thousands, or even tens of thousands mg/L of multiple metal ions to below the values of the Chinese National Emission Standards of Pollutants. Furthermore, the obtained NiFe-based LDHs exhibit excellent catalytic performance of phenol hydroxylation due to the mineralization of multiple metals on the laminates, where 48.24% conversion of phenol and 71.58% selectivity of dihydroxybenzenes are realized under room temperature for 3 h. This work paves a sustainable strategy for hazardous material disposal and resource utilization.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.