A Microscopically Heterogeneous Colloid Electrolyte for Extremely Fast-Charging and Long-Calendar-Life Silicon-Based Lithium-Ion Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Weifeng Zhang, Wenwu Zou, Guoxing Jiang, Shengguang Qi, Siyuan Peng, Prof. Huiyu Song, Prof. Zhiming Cui, Prof. Zhenxing Liang, Prof. Li Du
{"title":"A Microscopically Heterogeneous Colloid Electrolyte for Extremely Fast-Charging and Long-Calendar-Life Silicon-Based Lithium-Ion Batteries","authors":"Weifeng Zhang,&nbsp;Wenwu Zou,&nbsp;Guoxing Jiang,&nbsp;Shengguang Qi,&nbsp;Siyuan Peng,&nbsp;Prof. Huiyu Song,&nbsp;Prof. Zhiming Cui,&nbsp;Prof. Zhenxing Liang,&nbsp;Prof. Li Du","doi":"10.1002/anie.202410046","DOIUrl":null,"url":null,"abstract":"<p>Fast-charging capability and calendar life are critical metrics in rechargeable batteries, especially in silicon-based batteries that are susceptible to sluggish Li<sup>+</sup> desolvation kinetics and HF-induced corrosion. No existing electrolyte simultaneously tackles both these pivotal challenges. Here we report a microscopically heterogeneous covalent organic nanosheet (CON) colloid electrolyte for extremely fast-charging and long-calendar-life Si-based lithium-ion batteries. Theoretical calculations and operando Raman spectroscopy reveal the fundamental mechanism of the multiscale noncovalent interaction, which involves the mesoscopic CON attenuating the microscopic Li<sup>+</sup>-solvent coordination, thereby expediting the Li<sup>+</sup> desolvation kinetics. This electrolyte design enables extremely fast-charging capabilities of the full cell, both at 8 C (83.1 % state of charge) and 10 C (81.3 % state of charge). Remarkably, the colloid electrolyte demonstrates record-breaking cycling performance at 10 C (capacity retention of 92.39 % after 400 cycles). Moreover, benefiting from the robust adsorption capability of mesoporous CON towards HF and water, a notable improvement is observed in the calendar life of the full cell. This study highlights the role of microscopically heterogeneous colloid electrolytes in enhancing the fast-charging capability and calendar life of Si-based Li-ion batteries. Our work offers fresh perspectives on electrolyte design with multiscale interactions, providing insightful guidance for the development of alkali-ion/metal batteries operating under harsh environments.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 42","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202410046","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fast-charging capability and calendar life are critical metrics in rechargeable batteries, especially in silicon-based batteries that are susceptible to sluggish Li+ desolvation kinetics and HF-induced corrosion. No existing electrolyte simultaneously tackles both these pivotal challenges. Here we report a microscopically heterogeneous covalent organic nanosheet (CON) colloid electrolyte for extremely fast-charging and long-calendar-life Si-based lithium-ion batteries. Theoretical calculations and operando Raman spectroscopy reveal the fundamental mechanism of the multiscale noncovalent interaction, which involves the mesoscopic CON attenuating the microscopic Li+-solvent coordination, thereby expediting the Li+ desolvation kinetics. This electrolyte design enables extremely fast-charging capabilities of the full cell, both at 8 C (83.1 % state of charge) and 10 C (81.3 % state of charge). Remarkably, the colloid electrolyte demonstrates record-breaking cycling performance at 10 C (capacity retention of 92.39 % after 400 cycles). Moreover, benefiting from the robust adsorption capability of mesoporous CON towards HF and water, a notable improvement is observed in the calendar life of the full cell. This study highlights the role of microscopically heterogeneous colloid electrolytes in enhancing the fast-charging capability and calendar life of Si-based Li-ion batteries. Our work offers fresh perspectives on electrolyte design with multiscale interactions, providing insightful guidance for the development of alkali-ion/metal batteries operating under harsh environments.

Abstract Image

用于极快速充电和长寿命硅基锂离子电池的微观异质胶体电解质。
快速充电能力和日历寿命是充电电池的关键指标,尤其是硅基电池,因为硅基电池容易受到缓慢的 Li+ 解溶动力学和高频引起的腐蚀的影响。目前还没有一种电解质能同时应对这两个关键挑战。在此,我们报告了一种微观异质共价有机纳米片(CON)胶体电解质,适用于极快速充电和长寿命的硅基锂离子电池。理论计算和操作拉曼光谱揭示了多尺度非共价相互作用的基本机制,其中涉及介观的 CON 削弱微观的 Li+ 溶剂配位,从而加快 Li+ 的解溶动力学。这种电解质设计使整个电池在 8C 时(83.1% 电量状态)和 10C 时(81.3% 电量状态)都具有极快的充电能力。值得注意的是,胶体电解液在 10C 下的循环性能打破了记录(400 次循环后容量保持率为 92.39%)。此外,得益于介孔 CON 对 HF 和水的强大吸附能力,整个电池的日历寿命也得到了显著提高。这项研究强调了微观异质胶体电解质在提高硅基锂离子电池快速充电能力和日历寿命方面的作用。我们的工作为具有多尺度相互作用的电解质设计提供了新的视角,为开发在恶劣环境下工作的碱-离子/金属电池提供了深刻的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信