A. Elsayed, M. M. K. Shehata, C. Godfrin, S. Kubicek, S. Massar, Y. Canvel, J. Jussot, G. Simion, M. Mongillo, D. Wan, B. Govoreanu, I. P. Radu, R. Li, P. Van Dorpe, K. De Greve
{"title":"Low charge noise quantum dots with industrial CMOS manufacturing","authors":"A. Elsayed, M. M. K. Shehata, C. Godfrin, S. Kubicek, S. Massar, Y. Canvel, J. Jussot, G. Simion, M. Mongillo, D. Wan, B. Govoreanu, I. P. Radu, R. Li, P. Van Dorpe, K. De Greve","doi":"10.1038/s41534-024-00864-3","DOIUrl":null,"url":null,"abstract":"<p>Silicon spin qubits are promising candidates for scalable quantum computers, due to their coherence and compatibility with CMOS technology. Advanced industrial processes ensure wafer-scale uniformity and high device yield, but traditional transistor processes cannot be directly transferred to qubit structures. To leverage the micro-electronics industry expertise, we customize a 300 mm wafer fabrication line for silicon MOS qubit integration. With careful optimization of the gate stack, we report uniform quantum dot operation at the Si/SiO<sub>2</sub> interface at mK temperature. We measure a record-low average noise with a value of 0.61 <span>\\({\\rm{\\mu }}{\\rm{eVH}}{{\\rm{z}}}^{-0.5}\\)</span> at 1 Hz and even below 0.1 <span>\\({\\rm{\\mu }}{\\rm{eVH}}{{\\rm{z}}}^{-0.5}\\)</span> for some operating conditions. Statistical analysis of the charge noise measurements show that the noise source can be described by a two-level fluctuator model. This reproducible low noise level, in combination with uniform operation of our quantum dots, marks CMOS manufactured spin qubits as a mature platform towards scalable high-fidelity qubits.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"17 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00864-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon spin qubits are promising candidates for scalable quantum computers, due to their coherence and compatibility with CMOS technology. Advanced industrial processes ensure wafer-scale uniformity and high device yield, but traditional transistor processes cannot be directly transferred to qubit structures. To leverage the micro-electronics industry expertise, we customize a 300 mm wafer fabrication line for silicon MOS qubit integration. With careful optimization of the gate stack, we report uniform quantum dot operation at the Si/SiO2 interface at mK temperature. We measure a record-low average noise with a value of 0.61 \({\rm{\mu }}{\rm{eVH}}{{\rm{z}}}^{-0.5}\) at 1 Hz and even below 0.1 \({\rm{\mu }}{\rm{eVH}}{{\rm{z}}}^{-0.5}\) for some operating conditions. Statistical analysis of the charge noise measurements show that the noise source can be described by a two-level fluctuator model. This reproducible low noise level, in combination with uniform operation of our quantum dots, marks CMOS manufactured spin qubits as a mature platform towards scalable high-fidelity qubits.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.