Adaptive choice of near-optimal expansion points for interpolation-based structure-preserving model reduction

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Quirin Aumann, Steffen W. R. Werner
{"title":"Adaptive choice of near-optimal expansion points for interpolation-based structure-preserving model reduction","authors":"Quirin Aumann, Steffen W. R. Werner","doi":"10.1007/s10444-024-10166-z","DOIUrl":null,"url":null,"abstract":"<p>Interpolation-based methods are well-established and effective approaches for the efficient generation of accurate reduced-order surrogate models. Common challenges for such methods are the automatic selection of good or even optimal interpolation points and the appropriate size of the reduced-order model. An approach that addresses the first problem for linear, unstructured systems is the iterative rational Krylov algorithm (IRKA), which computes optimal interpolation points through iterative updates by solving linear eigenvalue problems. However, in the case of preserving internal system structures, optimal interpolation points are unknown, and heuristics based on nonlinear eigenvalue problems result in numbers of potential interpolation points that typically exceed the reasonable size of reduced-order systems. In our work, we propose a projection-based iterative interpolation method inspired by IRKA for generally structured systems to adaptively compute near-optimal interpolation points as well as an appropriate size for the reduced-order system. Additionally, the iterative updates of the interpolation points can be chosen such that the reduced-order model provides an accurate approximation in specified frequency ranges of interest. For such applications, our new approach outperforms the established methods in terms of accuracy and computational effort. We show this in numerical examples with different structures.</p>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10444-024-10166-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Interpolation-based methods are well-established and effective approaches for the efficient generation of accurate reduced-order surrogate models. Common challenges for such methods are the automatic selection of good or even optimal interpolation points and the appropriate size of the reduced-order model. An approach that addresses the first problem for linear, unstructured systems is the iterative rational Krylov algorithm (IRKA), which computes optimal interpolation points through iterative updates by solving linear eigenvalue problems. However, in the case of preserving internal system structures, optimal interpolation points are unknown, and heuristics based on nonlinear eigenvalue problems result in numbers of potential interpolation points that typically exceed the reasonable size of reduced-order systems. In our work, we propose a projection-based iterative interpolation method inspired by IRKA for generally structured systems to adaptively compute near-optimal interpolation points as well as an appropriate size for the reduced-order system. Additionally, the iterative updates of the interpolation points can be chosen such that the reduced-order model provides an accurate approximation in specified frequency ranges of interest. For such applications, our new approach outperforms the established methods in terms of accuracy and computational effort. We show this in numerical examples with different structures.

自适应选择近优扩展点,实现基于插值的结构保持模型还原
基于插值的方法是高效生成精确的降阶代用模型的行之有效的方法。这类方法面临的共同挑战是如何自动选择好的甚至最佳的插值点,以及缩小阶模型的适当大小。对于线性、非结构化系统,解决第一个问题的方法是迭代有理克雷洛夫算法(IRKA),该算法通过求解线性特征值问题,通过迭代更新计算最佳插值点。然而,在保留系统内部结构的情况下,最佳插值点是未知的,而且基于非线性特征值问题的启发式算法导致潜在插值点的数量通常超过了降阶系统的合理规模。在我们的工作中,我们提出了一种基于投影的迭代插值方法,该方法受到 IRKA 的启发,适用于一般结构系统,可以自适应地计算出接近最优的插值点以及适当大小的降阶系统。此外,还可以选择插值点的迭代更新,从而使降阶模型在指定的频率范围内提供精确的近似值。对于此类应用,我们的新方法在精确度和计算量方面都优于现有方法。我们在不同结构的数值示例中展示了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信