Recent progress in heterostructured materials for room-temperature sodium-sulfur batteries

IF 24.5 Q1 CHEMISTRY, PHYSICAL
Haobin Song, Yifan Li, Xue L. Li, Yixiang Li, Dong-sheng Li, Deli Wang, Shaozhuan Huang, Hui Ying Yang
{"title":"Recent progress in heterostructured materials for room-temperature sodium-sulfur batteries","authors":"Haobin Song,&nbsp;Yifan Li,&nbsp;Xue L. Li,&nbsp;Yixiang Li,&nbsp;Dong-sheng Li,&nbsp;Deli Wang,&nbsp;Shaozhuan Huang,&nbsp;Hui Ying Yang","doi":"10.1002/idm2.12177","DOIUrl":null,"url":null,"abstract":"<p>Room-temperature sodium-sulfur (RT Na-S) batteries are a promising next-generation energy storage device due to their low cost, high energy density (1274 Wh kg<sup>−1</sup>), and environmental friendliness. However, RT Na-S batteries face a series of vital challenges from sulfur cathode and sodium anode: (i) sluggish reaction kinetics of S and Na<sub>2</sub>S/Na<sub>2</sub>S<sub>2</sub>; (ii) severe shuttle effect from the dissolved intermediate sodium polysulfides (NaPSs); (iii) huge volume expansion induced by the change from S to Na<sub>2</sub>S; (iv) continuous growth of sodium metal dendrites, leading to short-circuiting of the battery; (v) huge volume expansion/contraction of sodium anode upon sodium plating/stripping, causing uncontrollable solid-state electrolyte interphase growth and “dead sodium” formation. Various strategies have been proposed to address these issues, including physical/chemical adsorption of NaPSs, catalysts to facilitate the rapid conversion of NaPSs, high-conductive materials to promote ion/electron transfer, good sodiophilic Na anode hetero-interface homogenized Na ions flux and three-dimensional porous anode host to buffer the volume expansion of sodium. Heterostructure materials can combine these merits into one material to realize multifunctionality. Herein, the recent development of heterostructure as the host for sulfur cathode and Na anode has been reviewed. First of all, the electrochemical mechanisms of sulfur cathode/sodium anode and principles of heterostructures reinforced Na-S batteries are described. Then, the application of heterostructures in Na-S batteries is comprehensively examined. Finally, the current primary avenues of employing heterostructures in Na-S batteries are summarized. Opinions and prospects are put forward regarding the existing problems in current research, aiming to inspire the design of advanced and improved next-generation Na-S batteries.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 4","pages":"565-594"},"PeriodicalIF":24.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12177","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Room-temperature sodium-sulfur (RT Na-S) batteries are a promising next-generation energy storage device due to their low cost, high energy density (1274 Wh kg−1), and environmental friendliness. However, RT Na-S batteries face a series of vital challenges from sulfur cathode and sodium anode: (i) sluggish reaction kinetics of S and Na2S/Na2S2; (ii) severe shuttle effect from the dissolved intermediate sodium polysulfides (NaPSs); (iii) huge volume expansion induced by the change from S to Na2S; (iv) continuous growth of sodium metal dendrites, leading to short-circuiting of the battery; (v) huge volume expansion/contraction of sodium anode upon sodium plating/stripping, causing uncontrollable solid-state electrolyte interphase growth and “dead sodium” formation. Various strategies have been proposed to address these issues, including physical/chemical adsorption of NaPSs, catalysts to facilitate the rapid conversion of NaPSs, high-conductive materials to promote ion/electron transfer, good sodiophilic Na anode hetero-interface homogenized Na ions flux and three-dimensional porous anode host to buffer the volume expansion of sodium. Heterostructure materials can combine these merits into one material to realize multifunctionality. Herein, the recent development of heterostructure as the host for sulfur cathode and Na anode has been reviewed. First of all, the electrochemical mechanisms of sulfur cathode/sodium anode and principles of heterostructures reinforced Na-S batteries are described. Then, the application of heterostructures in Na-S batteries is comprehensively examined. Finally, the current primary avenues of employing heterostructures in Na-S batteries are summarized. Opinions and prospects are put forward regarding the existing problems in current research, aiming to inspire the design of advanced and improved next-generation Na-S batteries.

Abstract Image

室温钠硫电池用异质结构材料的最新进展
室温钠硫(RT Na-S)电池因其低成本、高能量密度(1274 Wh kg-1)和环境友好性而成为一种前景广阔的下一代储能设备。然而,RT Na-S 电池面临着硫阴极和钠阳极带来的一系列重大挑战:(i) S 和 Na2S/Na2S2 的反应动力学缓慢;(ii) 溶解的中间体多硫化钠(NaPSs)产生严重的穿梭效应;(iii) 从 S 到 Na2S 的变化引起巨大的体积膨胀;(iv) 钠金属枝晶的持续增长,导致电池短路; (v) 钠阳极在钠电镀/剥离时的巨大体积膨胀/收缩,导致固态电解质相间生长和 "死钠 "的形成无法控制。为解决这些问题,人们提出了各种策略,包括 NaPSs 的物理/化学吸附、促进 NaPSs 快速转化的催化剂、促进离子/电子转移的高导电性材料、良好的钠阳极异质界面均化 Na 离子通量以及缓冲钠体积膨胀的三维多孔阳极主机。异质结构材料可以将这些优点集于一身,实现材料的多功能性。本文综述了以异质结构为宿主的硫阴极和钠阳极的最新发展。首先,介绍了硫阴极/钠阳极的电化学机理和异质结构增强 Na-S 电池的原理。然后,全面考察了异质结构在 Na-S 电池中的应用。最后,总结了目前在 Na-S 电池中采用异质结构的主要途径。针对目前研究中存在的问题提出了看法和展望,旨在启发设计先进和改进的下一代 Na-S 电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信