Farhad Amiri, Mohammad Hassan Moradi, Mohsen Eskandari
{"title":"Suppression of low-frequency oscillations in hybrid/multi microgrid systems with an improved model predictive controller","authors":"Farhad Amiri, Mohammad Hassan Moradi, Mohsen Eskandari","doi":"10.1049/rpg2.13024","DOIUrl":null,"url":null,"abstract":"<p>Grid-forming inverters are used for voltage regulation and frequency control in autonomous hybrid microgrids and multi-microgrid systems by imitating synchronous generators. However, in microgrids with weak grids including low inertia levels and small X/R ratios, these inverters interact with each other, and as a result low-frequency oscillations (LFO) arise. LFO impacts the frequency stability of multi-microgrid systems. Nevertheless, LFO can be mitigated by the load-frequency control system, which serves as a secondary control mechanism. However, the presence of wind turbines and photovoltaic systems in hybrid microgrids adds complexity to the operation of the load-frequency control due to the uncertainty associated with these renewable energy resources, and various controllers have been employed. This paper proposes a novel approach to enhance the performance of the load-frequency control system and suppress LFO. The presented technique reduces the complexity of the hybrid microgrid structure by reducing the number of controllers. The model predictive control (MPC) technique is utilized for load-frequency control and the weight parameters of the MPC are determined using the rain optimization algorithm. The proposed method demonstrates improved dynamic response, reduced overshoot and undershoot responses, decreased controller complexity, and effective LFO suppression. The simulation results verify the effectiveness of the method.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 9-10","pages":"1691-1709"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13024","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Grid-forming inverters are used for voltage regulation and frequency control in autonomous hybrid microgrids and multi-microgrid systems by imitating synchronous generators. However, in microgrids with weak grids including low inertia levels and small X/R ratios, these inverters interact with each other, and as a result low-frequency oscillations (LFO) arise. LFO impacts the frequency stability of multi-microgrid systems. Nevertheless, LFO can be mitigated by the load-frequency control system, which serves as a secondary control mechanism. However, the presence of wind turbines and photovoltaic systems in hybrid microgrids adds complexity to the operation of the load-frequency control due to the uncertainty associated with these renewable energy resources, and various controllers have been employed. This paper proposes a novel approach to enhance the performance of the load-frequency control system and suppress LFO. The presented technique reduces the complexity of the hybrid microgrid structure by reducing the number of controllers. The model predictive control (MPC) technique is utilized for load-frequency control and the weight parameters of the MPC are determined using the rain optimization algorithm. The proposed method demonstrates improved dynamic response, reduced overshoot and undershoot responses, decreased controller complexity, and effective LFO suppression. The simulation results verify the effectiveness of the method.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf