Reda Abdel Azim, Saad Alatefi, Abdulrahman Aljehani
{"title":"A fully coupled thermo-poroelastic model for energy extraction in naturally fractured geothermal reservoirs: sensitivity analysis and flow simulation","authors":"Reda Abdel Azim, Saad Alatefi, Abdulrahman Aljehani","doi":"10.1186/s40517-024-00305-6","DOIUrl":null,"url":null,"abstract":"<div><p>The development of a novel method for modelling fluid flow and heat transfer in naturally fractured geothermal reservoirs represents a significant advancement in geothermal energy research. This Study presents a hybrid approach, which combines discrete fracture and single continuum techniques, to effectively capture the complex interactions between fluid flow and heat transfer in geothermal fractured reservoirs. In addition, the incorporation of the local thermal nonequilibrium method for simulating heat transmission accounts for the disparities in temperature between the rock matrix and the fluid, providing a more realistic representation of heat transfer processes. The study also presents a fully coupled thermo-poro-elastic framework that integrates fluid flow and heat transfer to comprehensively evaluate reservoir responses to injection/production scenarios. This coupled approach allows for the prediction of changes in reservoir properties, such as permeability and porosity, under varying fluid pressure and temperature conditions. The application of the proposed model to evaluate a geothermal reservoir’s long-term response to injection/production scenarios provides valuable insights into the reservoir’s behaviour and potential energy production capacity. The sensitivity analysis further enhances the model’s utility by identifying the key reservoir parameters that significantly influence the thermal depletion of the reservoir. Overall, this novel modelling approach holds promise for improving the understanding and management of naturally fractured geothermal reservoirs, contributing to the optimization of geothermal energy extraction strategies.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00305-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-024-00305-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of a novel method for modelling fluid flow and heat transfer in naturally fractured geothermal reservoirs represents a significant advancement in geothermal energy research. This Study presents a hybrid approach, which combines discrete fracture and single continuum techniques, to effectively capture the complex interactions between fluid flow and heat transfer in geothermal fractured reservoirs. In addition, the incorporation of the local thermal nonequilibrium method for simulating heat transmission accounts for the disparities in temperature between the rock matrix and the fluid, providing a more realistic representation of heat transfer processes. The study also presents a fully coupled thermo-poro-elastic framework that integrates fluid flow and heat transfer to comprehensively evaluate reservoir responses to injection/production scenarios. This coupled approach allows for the prediction of changes in reservoir properties, such as permeability and porosity, under varying fluid pressure and temperature conditions. The application of the proposed model to evaluate a geothermal reservoir’s long-term response to injection/production scenarios provides valuable insights into the reservoir’s behaviour and potential energy production capacity. The sensitivity analysis further enhances the model’s utility by identifying the key reservoir parameters that significantly influence the thermal depletion of the reservoir. Overall, this novel modelling approach holds promise for improving the understanding and management of naturally fractured geothermal reservoirs, contributing to the optimization of geothermal energy extraction strategies.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.